Between 1609 and 1619: Johannes Kepler publishes his
.I "laws of planetary motions" ,
which fixes a few problems with the view of Copernicus on the matter:
.BULLET
Planets move around the sun in ellipses.
.BULLET
The Sun is not near the center but at a focal point of the elliptical orbit.
.BULLET
Neither the linear speed nor the angular speed of the planet in the orbit is constant, but the area speed (closely linked historically with the concept of angular momentum) is constant.
Thus since the light is spread out over a bigger sphere, the intensity of the light observed at any point decreases inversely with the area of the sphere.
.NAMECITATION "TODO: find out who and when this was discovered"
.EXPLANATION1
Observing the pulsation period of a Cepheid indicates its true luminosity.
Also, the observed brightness of stars goes down inversely with the square of the distance to the star.
Therefore, comparing its known luminosity to its observed brightness gives us the actual distance to the star.
.EXPLANATION2
.\".CITATION1
.\"If one could determine the distance to a single Cepheid of a known period, then measuring the brightness of other Cepheids of the same period would allow one to determine the distance to these other stars.
.\".CITATION2
.\".NAMECITATION "Lawrence Krauss"
.
Starting in 1912, Slipher observes the spectra of light coming from nearby stars and distant spiral nebulae
.FOOTNOTE1
.I Nebulae
that we will soon find out they are actually entire galaxies.
.FOOTNOTE2
are almost the same.
The difference is a shift of the same wavelength in the
.I absorbed
lines.
1916, A. Einstein publishes his work on the
.I "general theory of relativity" .
This work is about gravity, space and time, and explains not only how objects move in the universe, but also how the universe itself might evolve.
Amongst many uses of this theory, the orbit of Mercury can be predicted more accurately than before with Newton's theory of gravity.
This fixes a small difference between observation and theoretical results.
.FOOTNOTE1
The planet doesn't come back to its initial position after an ellipse around the sun.
There is a slight precession of the perihelion of Mercury: 43 arc seconds (only
However, the theories of Newton and Einstein are both, at some point, inconsistent with the observations.
Gravitation is thought to be an attractive force: objects should then always collapse into each other.
Also, the scientific community still thinks the universe as static, eternal and composed of a single galaxy (our Milky Way) surrounded by a vast, dark, infinite empty space.
And without accurate knowledge of the distances with observed stars, nor better images, this idea seems consistent with the observations.
1917: Mount Wilson 100-inch (2.5 m) Hooker telescope, the world's largest at the time (from 1917 to 1949).
It will soon help to discover many things.
For example,
to prove the Andromeda nebula is external to our galaxy (1923, Edwin Hubble),
that the Universe is expanding (1929, Hubble and Milton Humason)
and to measure both its expansion rate and the size of the known Universe,
to find evidence for dark matter (1930s, Fritz Zwicky),
etc.
.FOOTNOTE1
We now make ten times bigger telescopes and hundred times bigger in area.
.FOOTNOTE2
1923-1924, with the period-luminosity relation and the measurement of Cepheid variable stars, Hubble determines that the distance with some Cepheids are too great to be inside our Milky Way.
.FOOTNOTE1
Hubble identifies a first galaxy (NGC 6822) in 1925, then the Triangulum galaxy (M33) in 1926, and Andromeda (M31) in 1929.