Neatroff

Ali Gholami Rudi
Updated in April 2018

Neatroff is a new implementation of Troff typesetting system in C programming
language, which tries to address, as neatly as possible, some of the shortcomings
of the original Troff based on the ideas and features available in Plan 9 Troff,
Heirloom Troff, and Groff. The latest versions of Neatroff, its PostScript and PDF
post-processor, Neatpost, and its eqn preprocessor, Neateqn, are available at their
home page (ink). This document enumerates Neatroff’s features, its new requests,
and its differences compared to other Troff implementations. On the other hand,
the document “Getting Started with Neatroff” ([inK) explains how to set up and

use Neatroff.

http://litcave.rudi.ir/
http://litcave.rudi.ir/neatstart.pdf

Noteworthy Features

The following list describes the main extensions of Neatroff compared to the
original Troff (many of these extensions are available in Groff and Heirloom Troff
as well). The number register .neat, which is always one in Neatroff, can be used

to distinguish Neatroff from other Troff implementations.

UTF-8 encoding
In Neatroff, input files and characters, glyph names, ligatures, hyphenation
patterns and dictionary, as well as quoted escape sequence delimiters and
arguments of commands like .tr, .hc, .tc, .Ic, .mc, and .fc are in UTF-8 encod-

ing.

Long macro, register, and environment names
When not in compatibility mode (activated with -C command line option
or the .cp request, as in Groff), Neatroff supports long macro, register, and
environment names. It also supports Groff-style escape sequences with long
arguments (for \[], *[], \$[], \[], \g[], \Kk[], \m[], \n[], and \s[]) and inter-
polating string registers with arguments (*[xyz arg1 arg?2 ...]). Note that like
Groff, Neatroff supports named environments and is not limited to original

Troff’s three fixed environments.

Advanced font features, ligature, and pairwise kerning

Neatroff and Neatmkfn (which generates Neatroff’s font descriptions) support
many of the advanced font features available in OpenType fonts. In a font, a
set of substitution and positioning rules may be specified, which are grouped
into several features and scripts. In Neatroff, features can be enabled with
Af and the active script and language can be selected with .ffsc. Neatmkfn
supports PostScript Type 1 fonts, TrueType fonts (TTF), and OpenType fonts
(OTEF). For the latter, however, it cannot extract glyph bounding boxes, which
is used by the Neateqn preprocessor. Therefore, if an OpenType font is sup-
posed to be used in Neateqn blocks, it should be converted to TrueType first
(the script that comes with Neatmkfn does this automatically).

Whole paragraph text formatting
Neatroff supports filling whole paragraphs at once, to achieve more uniform
word spacing. Like Heirloom Troff, the .ad request accepts arguments p or pb,
pl, and pr, which are equivalent to b, 1, and r, except that the filling is done for
whole paragraphs, i.e.,, words are collected until a line break is issued. This
inevitably changes the behaviour of some requests and traps: several lines
may be collected and ready to be output while executing them. For the end
macro, Troff invokes the macro specified with .em request without flushing
the last incomplete line. Neatroff follows the same behaviour even when
formatting whole paragraphs and does not write any of the collected lines to
the output. Since after the end macro no new page is started, collected lines
may be unexpectedly written to the end of the last page of the document. To
change that, the end macro can invoke the .br request. For requests that cause
break, using ' as the control character prevents writing any line of the collected
paragraph to the output, as expected. The exception to this rule is 'br, which
formats the words collected so far and outputs all resulting lines except the
final incomplete line (this is useful, for instance, for footnotes, which should be

inserted in the same page).

Paragraph formatting algorithm
For deciding at what points to break a paragraph into lines, Neatroff assigns
a cost to each possible outcome: a cost of 100 is assigned to each stretchable
space that has to be stretched 100 percent. The cost grows quadratically and
the cost of stretching a space 200 percent is 400. There are requests that adjust
the algorithm Neatroff uses for performing paragraph formatting. The .hycost
request changes the cost of hyphenating words. The default value is zero. The
\j escape sequence, as in Heirloom Troff, specifies the extra cost of line break
after a word; for instance, in “Hello\j"10000” world”, the words are not split by
the line breaking algorithm, unless absolutely necessary (i.e., if other options
are more costly). The escape sequence \~ introduces non-breakable stretch-
able space. Also, to prevent paragraphs with very short last lines, the .pmll
(paragraph minimum line length) sets the minimum length of a formatted
line, specified as a percentage of \n(.I; “.pmll 15”, for instance, ensures that the
length of last line of each paragraph is at least 15% of its other lines; otherwise,

a cost proportional to the value specified as its second argument is added.

Controlling word spaces
The .ssh request sets the amount (in percentage) by which the stretchable
spaces in a line may be shrunk while formatting lines. The default value is
zero. Also, the second argument of .ss request specifies sentence space, as in

Groff or Heirloom Troff.

Macros and their arguments
In a macro, \$* is replaced with macro’s argument separated by spaces. \$@
is like \$*, but quotes the arguments as well. \$" is like \$@, except that it
escapes the double quotes in the arguments. The arguments can be shifted
with .shift request. Neatroff also supports blank line macro (.blm) and leading

space macro (.Ism).

Text direction
Neatroff supports text direction to render right-to-left languages. .<< and
.>> requests specify text direction and \< and \> escape sequences change it
temporarily for including words in the reverse direction. The value of number
registers .td and .cd indicate the current text and temporary directions respec-
tively; zero means left-to-right and one means right-to-left. Neatroff starts

processing text direction, after the first invocation of .<< or .>>.

Keshideh justification and cursive scripts
A new adjustment type (.ad k) allows inserting Keshideh characters before
justifying text with hyphenation and spaces. Neatroff also supports cursive
scripts, which require connecting glyphs at their cursive attachment positions,

as defined in the fonts.

Font manipulation
In Neatroff, the mapping between Troff character names and glyphs in a font
can be modified with .fmap request: “.fmap F C G” maps Troff character C
to the glyph with device-specific name G for font F. When this glyph does
not exist in F, Neatroff assumes that the character C is not present in the font.
When G is missing, the effect of .fmap for character C is cancelled. Neatroff
also implements Groff’s .fspecial and .fzoom requests: after “.fspecial FN S1 52

...”, when the current font is FN, the fonts S1, 52, ... are assumed to be special.

Also, “.fzoom FN zoom” scales font FN by the second argument after dividing
it by 1000.

Colour support
Neatroff supports colours with .cl request and \m[] escape sequence. Unlike
Groff, colours need not be defined beforehand and can be specified directly.
The argument of \m can be predefined colour names (e.g. blue), predefined
colour numbers (0 for black, 1 for red, 2 for green, 3 for yellow, 4 for blue, 5 for
magenta, 6 for cyan, and 7 for white), #rgb and #rrggbb for specifying colours
in hexadecimal RGB format, #g and #gg for specifying grey with the given
hexadecimal level, and empty (\m[]) for the previous colour. The current

colour is available in .m number register.

Hyphenation language
The .hpf request loads hyphenation patterns, exceptions, and character map-
pings from the addresses specified via its arguments. The specified files
should contain nothing but utf-8 patterns, exceptions and mappings respec-
tively (i.e. no TeX code), just like the files whose names end with .pat.txt,
hyp.txt and .chr.txt in CTAN for TeX (link). The .hpfa request is like .hpf,
except that it does not clear the previous hyphenation patterns and exceptions.
The second and third arguments of these requests are optional. With no argu-
ments, these requests load English hyphenation patterns and exceptions. Also
the “.hcode abcd...” request, assigns the hyphenation code of b to a and the
hyphenation code of d to ¢; initially all upper-case ASCII letters are mapped to

their lower-case forms.

Filled drawing objects
Neatroff supports Groff-style polygons and filled drawing objects (p, C, E and
P commands for \D escape sequence). In Neatroff, however, there is no spe-
cific background colour; objects are filled with the current colour (.m number
register). Furthermore, in Neatroff the edges of polygons can be lines, arcs,
or splines; a letter among the arguments of \D’p .. specifies the type of the

subsequent edges: ‘I, ‘a’, and ‘~” for lines, arcs, and splines respectively.

ftp://ftp.ctan.org/tex-archive/language/hyph-utf8/tex/generic/hyph-utf8/patterns/txt/

Conditional escape sequence
Neatroff supports a new escape sequence for conditional interpolation: the
escape sequence \?’cond@exprl@expr2@’, evaluates cond (exactly as if it is
a .if condition) and interpolates exprl, if the condition is true, and expr2,
otherwise. The delimiter (@ in this example) can be any character that cannot
be part of the condition; for numerical expressions, for instance, it cannot
be a digit, an operator sign, or a scale indicator, unless separated from the
condition with \&. The final delimiter, and even expr2, may be omitted, thus

\?’cond@expr’ is valid; Neatroff interpolates expr if cond is true.

Neatpost-specific device commands
Neatpost can produce both PostScript and PDF. The escape sequences \X'eps
img.eps [width [height]]” and \X'pdf img.pdf [width [height]]" in Neatroff
instruct Neatpost to include the given EPS or PDF file; the former works only
when the output is PostScript and the latter when the output is PDE. They
include the given EPS/PDF file with its lower left corner at the current point.
If the width or height are given (in basic units), the image is scaled appro-
priately. Neatroff also supports \X'rotate deg’ for rotating the current page

around the current point.

Helper Macro Packages
In addition to the standard Troff macro packages, such as -ms, -mm, and
-me, which are imported from Plan 9 Troff, Neatroff comes with a few
convenient helper macro packages as follows (these macros are included in
neatroff_make): for drawing simple tables without the tbl preprocessor -mtbl,
for including EPS and PDF images -meps, for drawing simple charts and
graphs -mgr, for floating objects -mkeep. Some Groff-specific macros are
implemented in -mgnu, such as open, opena, close, write, pso, and mso. Also,
-men and -mfa include -ms-like macros for creating short English and Farsi

documents.

Summary of New Requests
This is the list of new requests available in Neatroff compared to those docu-

mented in “Troff User’s Manual” by Ossanna and Kernighan.

.ad p* b E
With values pl, pr, pb, and p, this request instructs Neatroff to perform whole-
paragraph line formatting. Also, the value k enables Keshideh justification (kp

is the equivalent for whole-paragraph formatting).

.blm M - -
Specify the blank line macro. If specified, each blank line is treated as an

invocation of this macro.

.chop R - -

Remove the last character of a string register.

.cl C 0 E
Change text colour. The current colour is available in the number register
\n(.m. With no arguments, the previous colour is selected. The format of the

argument and the \m escape sequence are described in the previous section.

.co SRC DST - -
Copy the contents of register SRC into register DST.

.co+ SRC DST - -
Append the contents of register SRC to register DST.

.co> R F - -

Copy the contents of register R into file F.

.CO< R F - _

Read the contents of register R from file F.

.char C DEF - -
Define Troff character C. If DEF is missing, previous definitions for character

C are removed.

.ochar FN C DEF - -
Define Troff character C only for font FN. If DEF is missing, previous defini-

tions for character C are removed.

.rchar C - _

Remove the definition of character C.

.eos S T S=.21 T=")]* -
Specify sentence characters. The first argument specifies the characters that
end a sentence and the second argument specifies the characters ignored after

them.

.fzoom F N 1000 -
Magnify the given font by N/1000.

fp NF L - -
In Neatroff, if instead of the position of the font to be mounted, N is a dash, the
position of the font is decided automatically: if a font with the same name is
already mounted, the same position is reused. Otherwise the font is mounted

on the next available position.

.ff F +F1 -F2 - -
Enable or disable font features; the first argument specifies the font and the
rest of the arguments specify feature names, prefixed with a plus to enable or
a minus to disable. When a feature is enabled, all substitution and positioning

rules of a font with that feature name are applied when laying out the glyphs.

.ffsc F SC LN - -
Specify font’s script and language. A Neatroff font description specifies a set
of rules for each script and language, grouped into several features. With this

request, only the rules for the specified script and language are enabled. By

default, or when SC is missing, all scripts are selected. When LN is missing,

the rules of the default language of the selected script are enabled.

.fspecial F S1 S2 - -

Set special fonts when the current font is F.

.fmap FN CH GID - -
Map Troff character CH to glyph with device dependent name GID for font
FN. When gid is missing, the effect of mapping CH is cancelled. Neatroff
implicitly calls .fmap for all aliases in font descriptions (character definitions

whose second column is ").

.hycost N N2 N3 0 E
Change the cost of hyphenating words when adjusting lines. An argument
of 100 assigns to each hyphenation the cost of stretching a space one hundred
percent while formatting. The second and third arguments specify additional
costs for two and three consecutive hyphenated lines (only when formatting

whole paragraphs).

.hlm n 0 E
Set the maximum number of consecutive hyphenated lines (only when for-
matting whole paragraphs). The current value is available via \n[.hIm]. An

argument of zero or a negative number implies no limitation.

.hydash C \:\(hy\(en\(em-\-\(-- -
Specify the list of characters after which words may be broken (even when

hyphenation is disabled) without inserting hyphens.

.hystop C \% -
Specify hyphenation inhibiting characters. Words containing any of the given
characters are not hyphenated, unless after dashes (characters specified via

.hydash) or hyphenation indicators (\%).

.hpf P HC - -
Set hyphenation files for patterns, exceptions, and mappings. With no argu-

ments, loads English hyphenation patterns and exceptions.

.hpfa P H C - -
Like, .hpf, but do not clear the previous hyphenation patterns.

.hcode abcd. .. - -
Assign the hyphenation code of b to a and the hyphenation code of d to c.

.in2 0 E
Right-side indentation. The current right-side indentation is available in

register \n(.L

.ti2 0 E

Right-side temporary indentation.

.kn N 1 E

Enable or disable pairwise kerning (current value available through \n[.kn]).

.lsm M - -
Specify the leading space macro. If specified, for each line with leading spaces,
this macro is invoked. The register \n[lsn] holds the number of leading spaces

removed from the line.

.pmll N C 0 E
Set paragraph minimum line length in percentage. To shorter lines, Neatroff
assigns a cost proportional to the value specified as the second argument (or
100, if missing) when formatting paragraphs. Number registers \n[.pmll] and

\n[.pmllcost] store the values passed to .pmll.
D>> . << left-to-right E

Render text in left-to-right or right-to-left direction. See the first section for an

explanation of escape sequences \>and \<.

10

.shift N - -

Shift macro arguments by N positions.

.ssh N 0 E
Set the amount stretchable spaces in formatted lines may be shrunk in per-

centage (available through \n[.ssh]).

.ss M N M=12 N=12 E

The second argument sets sentence space size (available in \n[.sss]).

.tkf FN S1 N1 S2 N2 - -
Enable track kerning for font FN. If the point size is at most S1, the width of
each character is increased by N1 points, if it is at least 52, the width of each
character is increased by N2 points, and if it is between S1 and S2, the width
of each character is increased by a value between N1 and N2, relative to the

difference between the current point size and S1.

11

Notes

The standard macro packages
The standard Troff macro packages and a top-level build script to obtain and
install Neatroff are available in neatroff_make git repository (linK). “Getting
Started with Neatroff” ([ink) explains how to use this repository.

Formatting equations with Neategn
Neategn is an eqn preprocessor for Neatroff. It implements many of the
extensions introduced in Groff's eqn preprocessor. It can use TeX’s Computer
Modern-style bracket-building symbols, if available. “Typesetting Mathemat-
ics with Neateqn” ([ink) introduces Neateqn.

Generating the output device
The Neatmkfn program ([ink)) generates Neatroff font descriptions for AFM or
TrueType fonts (OpenType fonts are converted to TrueType first). It includes a

script to create a complete output device for Neatroff.

Missing requests
A few requests of the original Troff are not implemented: .pi, .cf, .rd, .pm, .ul,
.cu, .uf, \H, and \S.

Porting and distribution
Given that Neatroff, Neatpost, Neatmkfn, and Neateqn can be compiled with
Neatcc, porting them to other Unix variants besides Linux should not be
difficult. Note that Neatroff is released under the ISC licence.

List of OpenType font features
As mentioned in previous sections, font features can be enabled and disabled
with .ff request. For the list of OpenType features in general and their descrip-
tions, see the list of typographic features in Wikipedia (linK) or OpenType
specification ([ink).

12

http://litcave.rudi.ir/
http://litcave.rudi.ir/neatstart.pdf
http://litcave.rudi.ir/neateqn.pdf
https://github.com/aligrudi/neatmkfn
https://en.wikipedia.org/wiki/List_of_typographic_features
http://www.microsoft.com/typography/OTSPEC/featurelist.htm

Font Description Files

The format of font description files in Neatroff, although still mostly backward
compatible, has been slightly changed. The value of special, spacewidth, and
ligatures parameters retain their old meanings; sizes and name parameters are
ignored, however. The value of the fontname parameter in Neatroff specifies the
device name of the font (e.g. Times-Roman); Neatpost uses it to map Troff fonts to
PostScript fonts. In the charset section, the forth field is always the device-specific
name of the glyph (accessible with \N escape sequence) and the optional fifth
tield specifies glyph’s code (the fourth field of the original Troff).

In addition to the old charset section of the original Troff, Neatroff supports a
new syntax for defining characters and kerning pairs. Lines starting with the
word “char” define characters (similar to lines in the charset section) and lines
starting with “kern” specify kerning pairs. For the latter, “kern” is followed by
three tokens: the name of the first glyph, the name of the second glyph, and the
amount of kerning between them. Specifying the name of glyphs (the fourth field
after “char”) instead of character names allows specifying kerning pairs for glyphs
not mapped to any characters (may be later with .fmap request) or specifying
kerning pairs only once for all aliases of a character. Here are a few lines of a font

description file for Neatroff, created with Neatmkfn.

name R

fontname Times—Roman
spacewidth 25
ligatures fi £f1 O

the list of characters

char ! 33 2 exclam 33
char . 25 0 period 46
char A 72 2 A 65
char B 67 2 B 66
char (o 67 2 (o 67

the kerning pairs
kern A C -5
kern A period -1

The width column of the character definition lines can optionally include four

more numbers, separated with commas, that describe the bounding boxes of the

13

glyphs. The bounding boxes are used in the \w escape sequence; after this escape
sequence, the value of the bbllx, bblly, bburx and bbury number registers are
modified to represent the bounding box of the argument of \w.

To use the advanced features present in TrueType and Openlype fonts,
Neatroff supports lines that define substitution and positioning rules (lines start-
ing with “gsub” and “gpos” respectively). Note that unlike Heirloom Troff, which
implements non-contextual single-character substitutions, Neatroff implements
many of the more complex OpenType substitution and positioning features. The
following example shows how such features are defined in Neatroff font descrip-

tions:

gsub liga:latn 4 -gll -gl2 -gl3 +gll23
gpos kern:latn 2 gll1:+0+0-5+0 gl2

In this example, the first line defines a 3-character ligature (with feature name “li-
ga” and script name “latn”) and the second defines pairwise kerning for the pair
of glyphs gll and gl2 (decreasing the horizontal advance of gl1 by 5 basic units;
with feature name “kern” and script name “latn”). The patterns can be longer and
more detailed, defining context or glyph groups, to support OpenType features

that require them; for examples, see the files generated by Neatmkifn.

14

Source Code Organization
The following figure shows where Neatroff's major layers and features are imple-

mented in its source tree.

in.C reg.c Registers and environments

Input handling

whb.c Word buffer

cp.C
Copy-mode interpretation eval.c Integer expression evaluation
tr.c fmt.c Line formatting

Troff request/macro execution

dev.c Output device

ren.c
font.c Fonts
Rendering, traps, and diversions

hyphc Tex hyphenation

out.c
Generating Troff output

dir.c Text direction

15

	Noteworthy Features
	Summary of New Requests
	Notes
	Font Description Files
	Source Code Organization

