
AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

Computing Science Technical Report No. 114

GRAP � A Language for Typesetting Graphs
Tutorial and User Manual

Jon L. Bentley
Brian W. Kernighan

December, 1984

GRAP � A Language for Typesetting Graphs
Tutorial and User Manual

Jon L. Bentley
Brian W. Kernighan

AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

ABSTRACT

GRAP is a language for describing plots of data. This graph of the 1984 age distri-
bution in the United States

0 20 40 60 80

0

1

2

3

4

5

Population
(in millions)

1984 Age

is produced by theGRAPcommands

coord x 0,89 y 0,5
label left "Population" "(in millions)"
label bottom "1984 Age"
draw solid
copy "agepop.d"

(Each line in the data fileagepop.d contains an age and the number of Americans of
that age alive in 1984; the file is sorted by age.)

The GRAP preprocessor works withPIC and TROFF. Most of its input is passed
through untouched, but statements between.G1 and .G2 are translated intoPIC com-
mands that draw graphs.

December, 1984

GRAP � A Language for Typesetting Graphs
Tutorial and User Manual

Jon L. Bentley
Brian W. Kernighan

AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

1. Introduction

GRAP is a language for describing graphical displays of data. It provides such services as automatic
scaling and labeling of axes, andfor statements,if statements, and macros to facilitate user programma-
bility. GRAP is intended primarily for including graphs in documents prepared on the Unix operating sys-
tem, and is only marginally useful for elementary tasks in data analysis.

Section 2 of this document is a tutorial introduction toGRAP; readers who find it slow going may
wish to skim ahead. The examples in Section 3 illustrate the various kinds of graphs thatGRAP can pro-
duce and some commonGRAP idioms. Mundane matters about usingGRAPare discussed in Section 4, and
Section 5 contains a brief reference manual.

We have tried to illustrate good principles of statistics and graphical design in the graphs we present.
In several places, though, good taste has lost to the necessity of illustratingGRAP capabilities. Readers
interested in statistical integrity and taste should consult the literature.

2. Tutorial

The following is a simpleGRAPprogram

.G1
54.2
49.4
49.2
50.0
48.2
...
44.60
.G2

The single number on each line is the winning time in seconds for the men’s 400 meter run, from the first
modern Olympic Games (1896) to the nineteenth (1980). If the fileolymp.g contains the text above, then
typing the command

grap olymp.g | pic | troff >junk

creates aTROFFoutput filejunk that contains the picture

 Unix is a Trademark of AT&T Bell Laboratories.
 See, for instance,Graphical Methods in Data Analysisby Chambers, Cleveland, Kleiner and Tukey orVisual Display
of Quantitative Informationby Tufte.
 Throughout this document we will show only the first five lines and the last line of data files; omitted lines are indi-
cated by ‘‘...’’.

- 2 -

0 5 10 15 20

45

50

�

� �
�

�

�

� �

� � � �
�

� �

�
� � �

The graph shows the decrease in winning times from 54.2 seconds to 44.60 seconds. If the times are con-
tained in the file400mtimes.d , we could produce the same graph with the shorter program

copy "400mtimes.d"

Writing copy "fname" in a GRAP program is equivalent to including the contents of filefname at that
point in the file. (In the interests of compatibility with other programs,include is a synonym forcopy .)

Each line in the file400mpairs.d contains two numbers, the year of the Olympics and the win-
ning time:

1896 54.2
1900 49.4
1904 49.2
1908 50.0
1912 48.2
...
1980 44.60

If we plot this data with the program

copy "400mpairs.d"

the bottom (x) axis represents the year of the Olympics.

1900 1920 1940 1960 1980

45

50

�

� �
�

�

�

� �

� � � �
�

� �

�
� � �

The ‘‘holes’’ in x-values reflect the fact that the 1916, 1940, and 1944 Olympics were cancelled due to war.
Because the previous data (in400mtimes.d) had just one number per line,GRAP viewed it as a ‘‘time
series’’ and suppliedx-values of 1, 2, 3,. . . before plotting the data asy-values. The input to the second

- 3 -

program has two values per line, so they are interpreted as (x,y) pairs.

Rather than a scatter plot of points, we might prefer to see the winning times connected by a solid
line. The program

draw solid
copy "400mpairs.d"

produces the graph

1900 1920 1940 1960 1980

45

50

Eric Liddell of Great Britain won his gold medal in Paris in 1924 with a time of 47.6 seconds. (Remember
‘‘Chariots of Fire’’?)

We can make the graph more attractive by modifying its frame and adding labels.

frame invis ht 2 wid 3 left solid bot solid
label left "Time" "(in seconds)"
label bot "Olympic 400 Meter Run: Winning Times"
draw solid
copy "400mpairs.d"

The frame command describes the graph’s bounding box: the overall frame (which has four sides) is
invisible, it is 2 inches high and 3 inches wide (which happen to be the default height and width), and the
left and bottom sides are solid (they could have been dashed or dotted instead). The labels appear on the
left and bottom, as requested.

1900 1920 1940 1960 1980

45

50
Time

(in seconds)

Olympic 400 Meter Run: Winning Times

- 4 -

To set the range of each axis,GRAPexamines the data and pads both dimensions by seven percent at
each end. Thecoord (‘‘coordinates’’) command allows you to specify the range of one or both axes
explicitly; it also turns off automatic padding.

frame invis ht 2 wid 3 left solid bot solid
label left "Time" "(in seconds)"
label bot "Olympic 400 Meter Run: Winning Times"
coord x 1894,1982 y 42, 56
draw solid
copy "400mpairs.d"

They-axis now ranges from 42 to 56 seconds (a little more than before), and thex-axis from 1894 to 1982
(a little less).

1900 1920 1940 1960 1980

45

50

55

Time
(in seconds)

Olympic 400 Meter Run: Winning Times

The ticks in the preceding graphs were generated byGRAP guessing at reasonable values. If you
would rather provide your own, you may use theticks command, which comes in the flavors illustrated
below.

frame invis ht 2 wid 3 left solid bot solid
label left "Time" "(in seconds)" left .2
label bot "Olympic 400 Meter Run: Winning Times"
coord x 1894,1982 y 42, 56
ticks left out at 44 "44", 46, 48 "48", 50, 52 "52", 54
ticks bot in from 1900 to 1980 by 20
draw solid
copy "400mpairs.d"

The first ticks command deals with the left axis: it puts the ticks facing out at the numbers in the list.
GRAP puts labels only at values with strings, except that when no labels at all are given, each number
serves as its own label, as in the secondticks command. That command is for the bottom axis: it puts
the ticks facing in at steps of 20 from 1900 to 1980. The commandticks off turns off all ticks. GRAP
does its best to place labels appropriately, but it sometimes needs your help: theleft .2 clause moves
the left label 0.2 inches further left to avoid the new ticks.

- 5 -

Time
(in seconds)

Olympic 400 Meter Run: Winning Times

44

48

52

1900 1920 1940 1960 1980

The file400wpairs.d contains the times for the women’s 400 meter race, which has been run only
since 1964.

1964 52
1968 52
1972 51.08
1976 49.29
1980 48.88

To add these times to the graph, we use

frame invis ht 2 wid 3 left solid bot solid
label left "Time" "(in seconds)" left .2
label bot "Olympic 400 Meter Run: Winning Times"
coord x 1894,1982 y 42, 56
ticks left out at 44 "44", 46, 48 "48", 50, 52 "52", 54
ticks bot in from 1900 to 1980 by 20
draw solid
copy "400mpairs.d"
new dotted
copy "400wpairs.d"
"Women" size -3 at 1958,52
"Men" size -3 at 1910,47

The new command tellsGRAP to end the old curve and to start a new curve (which in this case will be
drawn with a dotted line). Text is placed on the graph by commands of the form

"string" at xvalue, yvalue

Thesize clauses following the quoted strings tellGRAP to shrink the characters by three points (absolute
point sizes may also be specified). Strings are usually centered at the specified position, but can be
adjusted by clauses to be illustrated shortly.

- 6 -

Time
(in seconds)

Olympic 400 Meter Run: Winning Times

44

48

52

1900 1920 1940 1960 1980

.

Women

Men

The filephone.d records the number of telephones in the United States from 1900 to 1970.

00 1.3
01 1.8
02 2.3
03 2.8
04 3.3
...
70 120.2

Each line gives a year and the number of telephones present in that year (in millions, truncated to the near-
est hundred thousand). The simpleGRAPprogram

copy "phone.d"

produces the simple graph

0 20 40 60

0

50

100

�������
���������

��������
���������������

����
���

��
��
��
��
��
��
��
��
��
�
�
�
�
�
�
�

The number of telephones appears to grow exponentially; to study that we will plot the data with a
logarithmicy-axis by addinglog y to thecoord command. We will also add cosmetic changes of labels,
more ticks, and a solid line to replace the unconnected dots.

- 7 -

label left "Millions of" "Telephones" "(log scale)" left .5
coord x 0,70 y 1,130 log y
ticks left out at 1, 2, 5, 10, 20, 50, 100
ticks bot out at 0 "1900", 70 "1970"
ticks bot out from 10 to 60 by 10 "’%g"
draw solid
copy "phone.d"

The thirdticks command provides a string that is used to print the tick labels.C programmers will rec-
ognize it as aprintf format string; others may view the ‘‘%g’’ as the place to put the number and any-
thing else (in this case just an apostrophe) as literal text to appear in the labels. To suppress labels, use the
empty format string (""). The program produces

Millions of
Telephones
(log scale)

1

2

5

10

20

50

100

1900 1970’10 ’20 ’30 ’40 ’50 ’60

The number of telephones grew rapidly in the first decade of this century, and then settled down to an expo-
nential growth rate upset only by a decrease in the Great Depression and a post-war growth spurt to return
the curve to its pre-Depression line.

Our presentation so far has been to start with a simpleGRAP program that illustrates the data, and
then refine it. Later in this document we will ignore the design phase, and present rather complex graphs in
their final form. Beware.

All the examples so far have placed data on the graph implicitly bycopy ing a file of numbers (either
a time series with one number per line or pairs of numbers). It is also possible to draw points and lines
explicitly. TheGRAPcommands to draw on a graph are illustrated in the following fragment.

- 8 -

frame ht 2 wid 2
coord x 0,100 y 0,100
grid dotted bot from 20 to 80 by 20
grid dotted left from 20 to 80 by 20

"Text above" above at 50,50
"Text rjust " rjust at 50,50
bullet at 80,90
vtick at 80,80
box at (80,70)
times at 80, 60

circle at 50,50
circle at 50,80 radius .25
line dashed from 10,90 to 30,90
arrow from 10,70 to 30,90

draw A solid
draw B dashed delta
next A at 10,10
next B at 10,20
next A at 50,20
next A at 90,10
next B at 50,30
next B at 90,30

The grid command is similar to theticks command, except that grid lines extend across the
frame. The next few commands plot text at specified positions. The plotting characters (such asbullet)
are implemented as predefined macros� more on that shortly. Unlike arbitrary characters, the visual cen-
ters of the markers are near their plotting centers. Thecircle command draws a circle centered at the
specified location. A radius in inches may be specified; if no radius is given, then the circle will be the
small circle shown at the center of the graph. Theline andarrow commands draw the obvious objects
shown at the upper left.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

20
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

40
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

60
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

80

. .20

. .40

. .60

. .80

Text above
Text rjust

�

|

×

æ

∆

∆ ∆

This figure also illustrates the combined use of thedraw and next commands. Sayingdraw A
solid defines the style for a connected sequence of line fragments to be calledA. Subsequent commands
of next A at point addpoint to the end ofA. There are two such sequences active in the above example
(A andB); note that theirnext commands are intermixed. Because the predefined stringdelta follows
the specification ofB, that string is plotted at each point in the sequence.

- 9 -

GRAPhas numeric variables (implemented as double-precision floating point numbers) and the usual
collection of arithmetic operators and mathematical functions; see the reference section for details.

GRAPprovides the same rudimentary macro facility thatPIC does:

define name X replacement textX

definesnameto be thereplacement text. X is any character that does not appear in the replacement; open
and closing braces{ } may also be used as delimiters. Any subsequent occurrence ofname will be
replaced byreplacement text.

The replacement text of a macro definition may contain occurrences of$1 , $2 , etc.; these will be
replaced by the corresponding actual arguments when the macro is invoked. The invocation for a macro
with arguments is

name(arg1, arg2, ...)

Non-existent arguments are replaced by null strings.

The followingGRAPprogram uses macros and arithmetic to plot crude approximations to the square
and square root functions.

frame ht 1.5 wid 1.5
define square X ($1)*($1) X
define root { exp(log($1)/2) }
define P !

times at i, square(i); i=i+1
circle at j, root(j); j=j+5

!
i=1; j=5
P; P; P; P; P

BecauseGRAPhas the square root functionsqrt , the macroroot is superfluous. The program produces

0 5 10 15 20 25

0

5

10

15

20

25

×
æ

×
æ

×

æ

×

æ

×

æ

Thecopy command has athru parameter that allows each line of a file to be treated as though it
were a macro call, with the first field serving as the first argument, and so on. This is the typicalGRAP
mechanism for plotting files that are not stored as time series or as (x,y) pairs. We will illustrate its use on
the filestates.d , which contains data on the fifty states.

AK 1 401851
WY 1 469557
VT 1 511456
DE 1 594338
ND 1 652717
...
CA 45 23667902

The first field is the postal abbreviation of the state’s name (Alaska, Wyoming, Vermont, ...), the second
field is the number of Representatives to Congress from the state after the 1981 reapportionment, and the
third field is the population of the state as measured in the 1980 Census. The states appear in increasing

- 10 -

order of population.

We will first plot this data as population, representative pairs. (In thecoord statement,log log is
a synonym forlog x log y .)

label left "Representatives" "to Congress" left .3
label bot "Population (Millions)"
coord x .3,30 y .8,50 log log
define PlotState X circle at ($3/1e6,$2) X
copy "states.d" thru PlotState

Although the population is given in persons, thePlotState macro plots the population in millions by
dividing the third input field by one million (written in exponential notation as1e6 , for 1×106).

1 10

1

2

5

10

20

Representatives
to Congress

Population (Millions)

æ ææ æææ

ææ ææææ æ

æ ææ

æ æ

ææææ

æææææ

ææ
ææææ

æææ
æææ
ææ

æ

ææ
ææ

æ

æ

æ

æ

Usingcircle as a plotting symbol displays overlapping points that are obscured when the data is plotted
with bullets. The representation of a state is roughly proportional to its population, except in the very small
states.

Our next plot will use the state’s rank in population as thex-coordinate and two differenty-
coordinates: population and number of representatives. We will use twocoord commands to define the
two coordinate systemspop andrep . We then explicitly give the coordinate system whenever we refer to
a point, both in constructing axes and plotting data.

frame ht 3 wid 3.5
label left "Population" "in Millions" "(Plotted as \(bu)"
label bot "Rank In Population" up .2
label right "Representatives" "(Plotted as \(sq)"
coord pop x 0,51 y .2,30 log y
coord rep x 0,51 y .3,100 log y
ticks left out at pop .3, 1, 3, 10, 30
ticks bot out at pop 1, 50
ticks right out at rep 1, 3, 10, 30, 100
thisrank=50
copy "states.d" thru X

bullet at pop thisrank,$3/1e6
square at rep thisrank,$2
thisrank=thisrank-1

X

The copy statement in the program uses animmediate macroenclosed inX’s and thus avoids having to
name a macro for this task. Because the program assumes that the states are sorted in increasing order of
population, it generatesthisrank internally as aGRAPvariable. The program produces

- 11 -

Population
in Millions

(Plotted as �)

Rank In Population

Representatives
(Plotted as ¡)

0.3

1

3

10

30

1 50

1

3

10

30

100

�

¡

�

¡
�
¡

�
¡

�
¡

�

¡

�

¡

�

¡
�
¡

�
¡

�
¡

�
¡

�
¡

�
¡�¡

�
¡

�¡

�

¡

�¡
�
¡

�

¡

�

¡

�
¡

�
¡

�
¡

�

¡

�

¡

�

¡

�

¡

�

¡

�

¡

�

¡

�

¡

�

¡

�

¡

�

¡

�

¡

�

¡

�

¡

�

¡

�

¡

�

¡

�

¡

�

¡

�

¡

�

¡

�

¡

�

¡

�

¡

�

¡

The plotting symbols were chosen for contrast in both shape and shading. This graph also indicates
that representation is proportional to population. Once we see this graph, though, we should realize that we
don’t really need two coordinate systems: we can relate the two by dividing the population of the U.S.�

about 226,000,000� by the number of representatives� 435� to see that each representative should
count as 520,000 people. If the purpose of this graph were to tell a story about American politics rather
than to illustrate multiple coordinate systems, it should be redrawn with a single coordinate system.

Many graphs plot both observed data and a function that (theoretically) describes the data. There are
many ways to draw a function inGRAP: a series ofnext commands is tedious but works, as does writing a
simple program to write a data file that is subsequently read and plotted by theGRAP program. Thefor
statement often provides a better solution. ThisGRAPprogram

frame ht 1 wid 3
draw solid
pi=atan2(0,-1)
for i from 0 to 2*pi by .1 do { next at i, sin(i) }

produces

0 2 4 6

�1

�0.5

0

0.5

1

The for statement uses the same syntax as theticks statement, but thefrom keyword can be replaced
by ‘‘ =’’, which will look more familiar to programmers. It varies the index variable over the specified
range and for each value executes all statements inside the delimiter characters, which use the same rules as
macro delimiters. It is, of course, useful for many tasks beyond plotting functions.

- 12 -

The if statement provides a simple mechanism for conditional execution. If a file contains data on
both cities and states (and lines describing states have ‘‘S’’ in the first field), it could be plotted by state-
ments like

if "$1" == "S" then {
PlotState($2,$3,$4)

} else {
PlotCity($2,$3,$4,$5,$6)

}

Theelse clause is optional; delimiters use the same rules as macros andfor statements.

3. A Collection of Examples

The previous section covered theGRAP commands that are used in common graphs. In this section
we’ll spend less time on language features, and survey a wider variety of graphs. These examples are
intended more for browsing and reference than for straight-through reading. You should be prepared to
refer to the manual in Section 5 when you stumble over a newGRAP feature.

The file cars.d contains the mileage (miles per gallon) and the weight (pounds) for 74 models of
automobiles sold in the United States in the 1979 model year.

22 2930
17 3350
22 2640
17 2830
23 2070

...
17 3170

The trivialGRAPprogram

copy "cars.d"

produces

10 20 30 40

2000

3000

4000

5000

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

��

�

�

�

��

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�
�

��
�

�

�
�

�
�

�

� ��
�

�

This graph shows that weights bottom out somewhat below 2000 pounds and that heavier cars get worse
mileage; it is hard to say much more about the relationship between weight and mileage.

The next graph provides labels, uses circles to expose data hidden in the clouds of bullets, and re-
expresses thex-axis in gallons per mile. It also changes the point size and vertical spacing to a size appro-
priate for camera-ready journal articles and books; the size changes should be made outside theGRAP pro-
gram. The.ft command changes to a Helvetica font, which some people prefer for graphs.

- 13 -

.ft H

.ps -2

.vs -2
frame ht 2.5 wid 2.5
label left "Weight" "(Pounds)" left .3
label bot "Gallons per Mile"
coord x 0,.10 y 0,5000
ticks left from 0 to 5000 by 1000
ticks bot from 0 to .10 by .02
copy "cars.d" thru X circle at 1/$1, $2 X
.vs +2
.ps +2
.ft

GRAP supports logarithmic re-expression of data with thelog clause in thecoord statement; any other
re-expression of data must be done withGRAParithmetic, as above.

Weight
(Pounds)

Gallons per Mile

0

1000

2000

3000

4000

5000

0 0.02 0.04 0.06 0.08 0.1

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

This graph shows that gallons per mile is roughly proportional to weight. (The two outliers near 4000
pounds are the Cadillac Seville and the Oldsmobile 98.)

In Visual Display of Quantitative Information, Tufte proposes the ‘‘dot-dash-plot’’ as a means for
maximizing data ink (showing the two-dimensional distribution and the two one-dimensional marginal dis-
tributions) while minimizing what he calls ‘‘chart junk’’� ink wasted on borders and non-data labels. His
preference is easy to express inGRAP:

frame invis ht 3 wid 3
coord x 0,.10 y 0,5000
copy "cars.d" thru X

tx=1/$1; ty=$2
bullet at tx,ty
tick bot at tx ""
tick left at ty ""

X

Although visually attractive, we do not find the resulting graph as useful for interpreting the data.

- 14 -

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�
� �

�

�

Tufte’s graph does point out two facts that are not obvious in the previous graphs: there is a gap in car
weights near 3000 pounds (exhibited by the hole in they-axis ticks), and the gallons per mile axis is regu-
larly structured (the ticks are the reciprocals of an almost dense sequence of integers). The reader may
decide whether those insights are worth the decrease in clarity.

Throughout the twentieth century, horses, cars and people have gotten faster; let’s study those
improvements. For horses, we’ll consider the winning times of the Kentucky Derby from 1909 to 1983, in
the filespeedhorse.d :

126.2
126.4
125.0
129.4
124.8
...
122.2

The program

label left "Winning Time" "(seconds)" left .3
label bot "Kentucky Derby, 1909 to 1983"
bestsofar=1000 # Greater than first time
year=09
copy "speedhorse.d" thru X

bullet at year,$1
bestsofar=min(bestsofar,$1)
line from year,bestsofar to year+1,bestsofar
year=year+1

X

produces the graph

- 15 -

20 40 60 80

120

125

130

Winning Time
(seconds)

Kentucky Derby, 1909 to 1983

��

�

�

�

�

�

�

�

�

�

�

�
�

��

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�
��

�
��

�

�

�

�

�
�

�

�

�

�

�

��

�

�

�

�

�

�

�

�
�

��

�

�

�

�
�

�

�

�
��

��

Each race is recorded with a bullet and record times are marked by horizontal lines. Secretariat is the only
horse to have run the one-and-a-quarter-mile race in under two minutes; he won in 1973 in 1:59.4.

For automobiles we will study the world land speed record (even though those vehicles are by now
just low-flying airplanes). The filespeedcar.d lists years in which speed records were set and the
record set in that year, in miles per hour averaged over a one-mile course.

06 127
10 131
11 141
19 149
20 155
...
83 633

We will plot the data with the followingGRAP program, which uses nested braces in thecopy and if
statements.

label bot "World Land Speed Record"
label left "Miles" "per" "Hour" left .4
ticks bot out from 10 to 70 by 10 ""
ticks bot out at 0 "1900", 40 "1940", 80 "1980"
firstrecord=1
copy "speedcar.d" thru {

if firstrecord==1 then {
firstrecord=0

} else {
line from lastyear,lastrec to $1,lastrec

}
lastyear=$1; lastrec=$2

}
line from lastyear,lastrec to 84,lastrec

Each record line is drawn after thenext record is read, because the program must know when the
record was broken to draw its line. Theif statement handles the first record, and the extraline com-
mand extends the last record out to the current date.

- 16 -

100

200

300

400

500

600

World Land Speed Record

Miles
per

Hour

1900 1940 1980

The horizontal lines reflect the nature of world records: they last until they are broken. The records could
also have been plotted by a scatterplot in which each point represents the setting of a record, but it would be
misleading to connect adjacent points with line segments (which is what we inappropriately did in the
graphs of the Olympic 400 meter run).

The following graph shows the world record times for the one mile run; because itsGRAPprogram is
so similar to its automotive counterpart, we won’t show the program or data.

230

240

250

1900 1940 1980
World Record One Mile Run

Time
(seconds)

The three graphs show three different kinds of changes. Although horses are getting faster, they appear to
be approaching a barrier near two minutes. Cars show great jumps as new technologies are introduced fol-
lowed by a plateau as limits of the technology are reached. Milers have shown a fairly consistent linear
improvement over this century, but there must be an asymptote down there somewhere.

The next file gives the median heights of boys in the United States aged 2 to 18, together with the
fifth and ninety-fifth percentiles.

2 82.5 86.8 94.4
3 89.0 94.9 102.0
4 95.8 102.9 109.9
5 102.0 109.9 117.0
6 107.7 116.1 123.5

...
18 165.7 176.8 187.6

The heights are given in centimeters (1 foot = 30.48 centimeters). The trivial program

- 17 -

copy "boyhts.d"

displays the data as

5 10 15

100

150

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Because there are four numbers on each input line, the first is taken as anx-value and the remaining three
are plotted asy-values.

The three curves appear to be roughly straight (at least up to age 16), so it makes sense to fit a line
through them. We will use the standard least squares regression in which

slope =
n£x2 − (£x)2

n£xy − £x£y_____________

(where the summations range over alln xandy values in the data set) and they-intercept is

n
£y − slope×£x______________

The followingGRAPprogram boldly (and rather foolishly) implements that formula.

label left "Heights in Feet" "(Median and" "fifth percentiles)"
label bot "Heights of Boys in U.S., ages 2 to 18"
cmpft = 30.48 # Centimeters per foot
minx = 1e12; maxx = -1e12
n = sigx = sigx2 = sigy = sigxy = 0
copy "boyhts.d" thru X

line from $1,$2/cmpft to $1,$4/cmpft
ty = $3/cmpft
bullet at $1,ty
n = n+1
sigx = sigx+$1; sigx2 = sigx2+$1*$1
sigy = sigy+ty; sigxy = sigxy+$1*ty
minx = min(minx,$1); maxx = max(maxx,$1)

X
Calculate least squares fit and draw it

slope = (n*sigxy - sigx*sigy) / (n*sigx2 - sigx*sigx)
inter = (sigy - slope*sigx) / n
print slope; print inter
line from minx,slope*minx+inter to maxx,slope*maxx+inter

It plots the extreme fifth percentiles as a bar through the median, which is plotted as a bullet. All heights
are converted to feet before plotting and calculating the regression line.

- 18 -

5 10 15

3

4

5

6

Heights in Feet
(Median and

fifth percentiles)

Heights of Boys in U.S., ages 2 to 18

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

� �

GRAP print statements write onstderr as they are processed byGRAP; their single argument
can be either an expression or a string. Theprint statements (which are commented out in the above
GRAPprogram) at one time showed that the regression line is

Height in Feet= 2.61 + .19×Age

Thus for most American boys between 3 and 16, you may safely assume that they started out life at 2 feet 7
inches and grew at the rate of two and a quarter inches per year.

This program probably misappliesGRAP; if you really want to perform least squares regressions on
data, you should usually use a simpleAWK program like

awk ’
{ x+=$1; x2+=$1*$1; y+=$2; xy+=$1*$2 }

END { slope=(NR*xy-x*y)/(NR*x2-x*x); print (y-slope*x)/NR, slope }
’ $*

(Be warned, though, that this program is not numerically robust.)

While we’re on the subject of fitting straight lines to data, we’ll redraw three graphs from J. W.
Tukey’s Exploratory Data Analysis. The file usapop.d records the population of the United States in
millions at ten-year intervals.

1790 3.93
1800 5.31
1810 7.24
1820 9.64
1830 12.87
...
1950 150.7

Tukey’s first two graphs indicate that the later population growth was linear while the early growth was
exponential. The followingGRAP program plots them as a pair, usinggraph commands to place inter-
nally unrelated graphs adjacent to one another.

- 19 -

graph Linear
coord x 1785,1955 y 0,160
label left "Population" "in Millions" left .2
label right "Linear Scale," "Linear Fit"
ticks bot off
copy "usapop.d"
define fit X 35 + 1.4*($1-1870) X
line from 1850,fit(1850) to 1950,fit(1950)

graph Exponential with .Frame.n at Linear.Frame.s -(0,.05)
coord x 1785,1955 y 3,160 log y
label left "Population" "in Millions" left .2
label right "Logarithmic Scale," "Exponential Fit"
copy "usapop.d"
define fit X exp(0.75 + .012*($1-1800)) X
line from 1790,fit(1790) to 1920,fit(1920)

The statements defining each graph are indented for clarity. The second graph has the northern point of its
frame 0.05 inch below the southern point of the frame of the first graph; thewith clause is passed directly
through toPIC without being evaluated for macros or expressions. The names of both graphs begin with
capital letters to conform toPIC syntax for labels.

0

50

100

150

Population
in Millions

Linear Scale,
Linear Fit

� � � � � �
�

�
�

�
�

�

�
�

�
�

�

1800 1850 1900 1950

5

10

20

50

100

Population
in Millions

Logarithmic Scale,
Exponential Fit

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� � �

Polynomial functions lie between the linear and exponential functions; Tukey shows how a seventh-
degree polynomial provides a better (and longer) fit to the early population growth.

- 20 -

label left "Population" "in Millions" left .2
label right "x re-expressed as" "" \

"$space 0 left ({date - 1600} over 100 right) sup 7$" left 1.2
define newx X exp(7*(log(($1-1600)/100))) X
ticks bot out at newx(1800) "1800", newx(1850) "1850",\

newx(1900) "1900"
copy "usapop.d" thru X

if $1<=1900 then { bullet at newx($1),$2 }
X

This program re-expresses thex-axis withGRAP arithmetic and uses anif statement to graph only part of
the data file. It produces

0

20

40

60

80

Population
in Millions

x re-expressed as



 100

date− 1600__________




7

1800 1850 1900

��
�

�
�

�

�

�

�

�

�

�

The EQN space 0 clause is necessary to keepEQN from adding extra space that would interfere with
positions computed byGRAP; see Section 4.

The filearmy.d contains four related time series describing the United States Army.

40 16 .9 249 1
42 190 12 2867 1
43 521 36 6358 55
44 692 47 7144 71
45 772 62 7283 90
...
83 80 9 606 67

The first field is the year; the next four fields give the number of male officers, female officers, enlisted
males and enlisted females, each in thousands. (Actually, there were no female enlisted personnel in the
Army until 1943; the value 1 in 1940 and 1942 is just a placeholder, sinceGRAP has no mechanism for
handling missing data.) The followingGRAP program draws the four series with four different sets of
draw andnext commands.

- 21 -

coord x 38,85 y .8,10000 log y
label bot "U.S. Army Personnel"
label left "Thousands" left .3
draw of solid # Officers Female
draw ef dashed # Enlisted Female
draw om dotted # Officers Male
draw em solid # Enlisted Male
copy "army.d" thru X

next of at $1,$3
next ef at $1,$5
next om at $1,$2
next em at $1,$4

X
copy thru % "$1 $2" size -3 at 60,$3 % until "XXX"
Enlisted Men 1200
Male Officers 140
Enlisted Women 12
Female Officers 2.5
XXX

The program labels the lines bycopy ing immediate data; the program is therefore shorter to write and eas-
ier to change. The delimiter stringXXX in the until clause could be deleted in this graph: the.G2 line
also denotes the end of data. Even though that string is enclosed in quotes, it may not contain spaces. The
y-positions of the labels are the result of several iterations.

40 50 60 70 80

1

10

100

1000

U.S. Army Personnel

Thousands

..
..
..
..
..
...
..
...
...

Enlisted Men

Male Officers

Enlisted Women

Female Officers

This data can tell many stories: the buildup during the Second World War is obvious, as is the exodus
after the war; increases during Korea and Vietnam are also apparent. We will consider a different story: the
ratio of enlisted men to the three other classes of personnel. There are several ways to plot this data (the
most obvious graph uses three time series showing how the ratios change over time, and is left as an exer-
cise for the reader).

We will instead construct a graph that gives little insight into this data, but illustrates a general
method that is quite useful in conjunction withGRAP. The graph is a ‘‘scatterplot vector’’ that shows how
one variable (the number of enlisted men) varies as a function of the other three. Breaking with tradition,
we first show the final graphs, all of which have logarithmic scales.

- 22 -

Male_Officers

Enlisted_Men

40

42

434445

46

50

55
6065

70

758083

Female_Officers

40

42

434445

46

50

55
6065

70

75 8083

Enlisted_Women

40

42

434445

46

50

55
6065

70

75 8083

The number of enlisted men is almost linearly related to the number of male officers, it is somewhat related
to the number of female officers, and it varies widely as a function of the number of enlisted women.

Much more interesting than the graph itself is the method we used to produce it. We wrote a minia-
ture ‘‘compiler’’ that accepts as its ‘‘source language’’ a description of a scatterplot vector and produces as
‘‘object code’’ aGRAPprogram to draw the graph. The source program for the above example is

file "army.d"
log x log y
symbol "\s-3$1\s+3"
y $4 Enlisted_Men
x $2 Male_Officers
x $3 Female_Officers
x $5 Enlisted_Women

The program lists several global attributes of the graph, they-variable to be plotted, and as manyx-
variables as are desired; with each variable is its field in the file and a descriptive string. The language is
‘‘compiled’’ by the followingAWK program.

awk ’
Parse all commands
$1=="file" { fname=$2 }
$1=="log" { logtext=$0 }
$1=="symbol" { symtext=$2 }
$1=="y" { yfield=$2; ylabel=$3 }
$1=="x" { n++; xfield[n]=$2; xlabel[n]=$3 }
Generate n graphs
END {
print ".G1"
for (i=1; i<=n; i++) {

if (s!="") print "#"
print "graph A" s
s=" with .Frame.w at A.Frame.e +(.1,0)"
print "frame ht " 5/n " wid " 5/n
print "label bot \"" xlabel[i] "\""
if (i==1) print "label left \"" ylabel "\""
if (logtext!="") print "coord " logtext
print "ticks off"
print "copy " fname " thru X " symtext\

" at " xfield[i] "," yfield " X"
}
print ".G2"
}’ $1

Running this program on the above description produces the following output, which is typically piped

- 23 -

directly toGRAP.

graph A
frame ht 1.66667 wid 1.66667
label bot "Male_Officers"
label left "Enlisted_Men"
coord log x log y
ticks off
copy "army.d" thru X "\s-3$1\s+3" at $2,$4 X
#
graph A with .Frame.w at A.Frame.e +(.1,0)
frame ht 1.66667 wid 1.66667
label bot "Female_Officers"
coord log x log y
ticks off
copy "army.d" thru X "\s-3$1\s+3" at $3,$4 X
#
graph A with .Frame.w at A.Frame.e +(.1,0)
frame ht 1.66667 wid 1.66667
label bot "Enlisted_Women"
coord log x log y
ticks off
copy "army.d" thru X "\s-3$1\s+3" at $5,$4 X

The generated program uses thePIC trick of re-using the same name (A) for several objects.

Although the program above is merely a toy, ‘‘minicompilers’’ can produce useful preprocessors for
GRAP. Thescatmat program, for instance, is a 90-lineAWK program that reads a simple input language
and produces as output aGRAP program to produce a ‘‘scatterplot matrix’’, which is a handy graphical
device for spotting pairwise interactions among several variables. IfGRAP lacks a feature you desire, con-
sider building a simple preprocessor to provide it. An alternative is to define macros for the task; which
approach is best depends strongly on the job you wish to accomplish.

The next graph uses iterators to make a graph without reading data from a file. Rather, its ‘‘data’’ is
a function of two variables that describes a derivative field and a function of one variable that describes one
solution to the differential equation.

frame ht 2.5 wid 2.5
coord x 0,1 y 0,1
label bot "Direction field is $y sup prime = x sup 2 / y$"
label left "$y= sqrt {(2x sup 3 +1)/3}$" right .3
ticks left in 0 at 0,1
ticks bot in 0 at 0,1
len=.04
for tx from .01 to .91 by .1 do {

for ty from .01 to .91 by .1 do {
deriv=tx*tx/ty
scale=len/sqrt(1+deriv*deriv)
line from tx,ty to tx+scale,ty+scale*deriv

}
}
draw solid
for tx = 0 to 1 by .05 do {

next at tx, sqrt((2*tx*tx*tx+1)/3)
}

The left label usesEQN text between the$$ delimiters. The variablescale ensures that all lines in the
direction field are the same length. Thein clauses in theticks statements specify that the ticks go in
zero inches to avoid overprinting. The variablestx and ty are so named becausex andy are reserved
words for thecoord statement.

- 24 -

Direction field isy′ = x2 /y

y = �(2x3 + 1)/3

0

1

0 1

Programmers familiar with floating point arithmetic may be surprised that the above graph is correct.
Because of roundoff error, iteration ‘‘from 0 to 1 by .05 ’’ usually produces the values
0, .05, .10, ..., .95. GRAPuses a ‘‘fuzzy test’’ in thefor statement to avoid that problem, which may in
turn introduce other problems. Such problems may be avoided by iterating over an integer range and incre-
menting a non-integer value within the loop.

Most of the data we have seen so far is inherently two (or more) dimensional. As an example of
one-dimensional data, we will return to the populations of the fifty states, which is the third field in the file
states.d introduced on page 9; the file is sorted in increasing order of population. Our first graph takes
the most space, but it also gives the most information.

frame ht 4 wid 5
label left "Rank in" "Population"
label bot "Population (Millions)"
label top "$log sub 2$ (Population)"
coord x .3,30 y 0,51 log x
define L % exp($1*log(2))/1e6 "$1" %
ticks bot out at .5, 1, 2, 5, 10, 20
ticks left out from 10 to 50 by 10
ticks top out at L(19), L(20), L(21), L(22), L(23), L(24)
thisy=50
copy "states.d" thru X

"$1" size -4 at ($3/1e6, thisy)
thisy=thisy-1

X
line dotted from 15.3,1 to .515,50

The L macro (for Label) with input parameterX evaluates to the number 2X /1,000,000 followed by the
string "X" (the ticks command expects a number followed by a string label).

- 25 -

Rank in
Population

Population (Millions)

log2 (Population)

0.5 1 2 5 10 20

10

20

30

40

50

19 20 21 22 23 24

AK
WY

VT
DE

ND
SD

MT
NV

NH
ID
RI
HI

ME
NM

UT
NE

WV
AR
KS

MS
OR
AZ

CO
IA
OK
CT
SC

KY
AL
MN
WA
LA
MD

TN
WI
MO

VA
GA
IN
MA
NC

NJ
MI

FL
OH

IL
PA

TX
NY

CA..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

The dotted line is the least squares regression

log10 Population = 7.214 − .03×Rank

which gives 15.3 million as the population of the largest state and .515 million as the population of the
smallest state. It says that population drops by a factor of two every ten states (compare the top and left
scales). As sloppy as the exponential fit is, though, it is a much better fit to this data than a Zipf’s Law
curve is (drawing that curve is left as an exercise for the reader).

The next graph is a more standard representation of one-dimensional data.

frame invis ht .3 wid 5 bottom solid
label bot "Populations (in Millions) of the 50 States"
coord x .3,30 y 0, 1 log x
ticks bot out at .5, 1, 2, 5, 10, 20
ticks left off
copy "states.d" thru X vtick at ($3/1e6,.5) X

The markers were chosen to bevticks because they denote only anx-value.

Populations (in Millions) of the 50 States
0.5 1 2 5 10 20

| | | | | | || |||| | | | | | || | || || ||| | | |||| || | ||| || | | | | | | | | |

- 26 -

The next one-dimensional graph uses the state’s name as its marker; to reduce overprinting the graph
is ‘‘jittered’’ by using a random number as ay-value.

frame invis ht 1 wid 5 bottom solid
label bot "Populations (in Millions) of the 50 States"
coord x .3,30 y 0,1000 log x
ticks bot out at .5, 1, 2, 5, 10, 20
ticks left off
copy "states.d" thru X "$1" size -4 at ($3/1e6,100+900*rand()) X

The functionrand() returns a pseudo-random real number chosen uniformly over the interval [0,1).

Populations (in Millions) of the 50 States
0.5 1 2 5 10 20

AK

WYVT

DE

ND

SD

MT

NV

NH

ID

RI

HI ME

NM

UT

NE

WV

AR

KS

MS

OR

AZ

CO

IA

OK

CT

SC

KY

AL
MN

WA

LA

MD
TN

WIMO

VA

GA

IN

MA
NC

NJ MI

FL

OH

IL

PA

TX
NY CA

This graph is too cluttered; circles would have been a better choice as a plotting symbol (bullets, once
again, would hide data).

Histograms are a standard way of presenting one-dimensional data in two-dimensional form. Our
first step in building a histogram of the population data is the followingAWK program, which counts how
many states are in each ‘‘bin’’ of a million people.

awk ’
BEGIN { bzs=0; bw=1e6 } # bin zero start; bin width

{ count[int(($3-bzs)/bw)]++ }
END { for (i in count) print i, count[i] }
’ <states.d | sort -n >states2.d

The variablebzs tells where bin zero starts; although it is zero in this graph, it might be 95 in a histogram
of human body temperatures in degrees Fahrenheit. The program produces the following output in
states2.d :

0 12
1 5
2 7
3 5
4 7
...
23 1

There are 12 states with population between 0 and 999,999, 5 states with population between 1,000,000 and
1,999,999, and so on.

This GRAPprogram uses threeline commands to plot each rectangle in the histogram.

- 27 -

frame invis bot solid
label bot "Populations (in Millions) of the 50 States"
label left "Number" "of" "States" left .3
ticks bot out from 0 to 25 by 5
coord x 0,25 y 0,13
copy "states2.d" thru X

line from $1,0 to $1,$2
line from $1,$2 to $1+1,$2
line from $1+1,$2 to $1+1,0

X

It produces

0

5

10

Populations (in Millions) of the 50 States

Number
of

States

0 5 10 15 20 25

The same file can be plotted in a more attractive (and more useful) form by

frame invis bot solid left solid
label bot "Populations (in Millions) of the 50 States"
label left "Number" "of" "States" left .3
ticks bot out from 0 to 25 by 5
coord x 0,25 y 0,13
copy "states2.d" thru X

line dotted from $1+.5,0 to $1+.5,$2
"\(bu" size -3 at $1+.5,$2

X

which produces one of Bill Cleveland’s ‘‘dot charts’’ or ‘‘lolliplots’’:

- 28 -

0

5

10

Populations (in Millions) of the 50 States

Number
of

States

0 5 10 15 20 25

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..�

..

..

..

..

..

..

..

..�

..

..

..

..

..

..

..

..

..

..

..

.�

..

..

..

..

..

..

..

..�

..

..

..

..

..

..

..

..

..

..

..

.�

..

..

..

..

..

..

..

..�

..

..�
..
..
..
.�

..

..�
..
..
..
.�

..

..�
..
..�

..

..�

(We use\(bu , theTROFFcharacter for a bullet, rather than the built-in string to get a larger size.)

Other histograms are possible. The followingAWK program

awk ’
BEGIN { bzs=0; bw=1e6 } # bin zero start; bin width

{ thisbin=int(($3-bzs)/bw); print $1, thisbin, count[thisbin]++ }
’ <states.d >states3.d

produces the filestates3.d

AK 0 0
WY 0 1
VT 0 2
DE 0 3
ND 0 4
...
CA 23 0

which lists the state’s abbreviation, bin number, and height within the bin. TheGRAPprogram

frame invis wid 4 ht 2.5 bot solid
ticks bot out from 0 to 25 by 5
ticks left off
label bot "Populations (in Millions) of the 50 States"
coord x 0,25 y 0,13
copy "states3.d" thru X "$1" size -4 at $2+.5, $3+.5 X

reads that file to make the following histogram, in which the state names are used to display the heights of
the bins. In each bin, the states occur in increasing order of population from bottom to top.

- 29 -

0 5 10 15 20 25
Populations (in Millions) of the 50 States

AK

WY

VT

DE

ND

SD

MT

NV

NH

ID

RI

HI

ME

NM

UT

NE

WV

AR

KS

MS

OR

AZ

CO

IA

OK

CT

SC

KY

AL

MN

WA

LA

MD

TN

WI

MO

VA

GA

IN

MA

NC

NJ MI

FL

OH IL

PA

TX NY CA

The next data set is a run-time profile of an early version ofGRAP, created by compiling the program
with the-p option and runningprof after the program executed.

%time cumsecs #call ms/call name
21.1 11.02 26834 0.41 _yylook
11.2 16.89 30 195.60 _yyparse

9.3 21.75 __doprnt
9.1 26.52 _write

...
0.0 52.19 170 0.00 _tickside

Although there were more than fifty procedures in the program, the top four time-hogs accounted for more
than half of the run time. This file is difficult forGRAP to deal with: even thoughif statements would
allow us to extract lines 2 through 11 of the file, we could not remove the leading ‘‘_’’ from a routine name
or access the last field in a record. We will therefore process it with the followingAWK program.

awk ’
NR==2, NR==11 { print $1, substr($NF,2) }
’ <prof1.d >prof2.d

The program produces

21.1 yylook
11.2 yyparse
9.3 _doprnt
9.1 write
5.9 input
...
2.0 nextchar

We could even use thesh statement to execute theAWK program from within theGRAP program, which
would make the latter entirely self-contained (see the reference manual for details).

We will display the data with this program.

- 30 -

ticks left off
cury=0
barht=.7
copy "prof2.d" thru X

line from 0,cury to $1,cury
line from $1,cury to $1,cury-barht
line from 0,cury-barht to $1,cury-barht
" $2" ljust at 0,cury-barht/2
cury=cury-1

X
line from 0,0 to 0,cury+1-barht
bars=-cury
frame invis ht bars/3 wid 3

Observe that the program knows nothing about the range of the data. It uses default ticks and aframe
statement with a computed height to achieve total data independence.

0 5 10 15 20

yylook

yyparse

_doprnt

write

input

print

sprintf

unput

yylex

nextchar

This bar chart highlights the fact that most of the time spent byGRAP is devoted to input and output.

J. W. Tukey’s box and whisker plots represent the median, quartiles, and extremes of a one-
dimensional distribution. The followingGRAP program defines a macro to draw a box plot, and then uses
that shape to compare the distribution of heights of volcanoes with the distribution of heights of States of
the Union.

- 31 -

frame invis ht 4 wid 3 bot solid
ticks off
coord x .5,3.5 y 0,25
define Ht X "- $1,000 -" size -3 at 2,$1 X
Ht(5); Ht(10); Ht(15); Ht(20)
"Highest Point" "in 50 States" at 1,23
"Heights of" "219 Volcanoes" at 3,23
"Feet" at 2,21.5; arrow from 2,22.5 to 2,24
define box X #(x,min,25%,median,75%,max,minname,maxname)

xc=$1; xl=xc-boxwidth/2; xh=xc+boxwidth/2
y1=$2; y2=$3; y3=$4; y4=$5; y5=$6
bullet at xc,y1
" $7" size -3 ljust at (xc,y1)
line from (xc,y1) to (xc,y2) # lo whisker
line from (xl,y2) to (xh,y2) # box bot
line from (xl,y3) to (xh,y3) # box mid
line from (xl,y4) to (xh,y4) # box top
line from (xl,y2) to (xl,y4) # box left
line from (xh,y2) to (xh,y4) # box right
line from (xc,y4) to (xc,y5) # hi whisker
bullet at xc,y5
" $8" size -3 ljust at (xc,y5)

X
boxwidth=.3
box(1, .3, 2.0, 4.6, 11.2, 20.3, Florida, Alaska)
box(3, .2, 3.7, 6.5, 9.5, 19.9, Ilhanova, Guallatiri)

Boxes are one of many shapes used for the graphical representation of several quantities. If you use such
shapes frequently then you should make a library file of their macros tocopy into your GRAP programs.
The above program produces

- 5,000 -

- 10,000 -

- 15,000 -

- 20,000 -

Highest Point
in 50 States

Heights of
219 Volcanoes

Feet

� Florida

� Alaska

� Ilhanova

� Guallatiri

Even though the extreme heights are the same, state heights have a lower median and a greater spread.

- 32 -

Someday you may useGRAP to prepare overhead transparencies, only to find that everything comes
out too small. The following program illustrates some ways to get larger graphs.

.ps 14

.vs 18
frame ht 2 wid 2
label left "Response" "Variable" left .5
label bot "Factor Variable"
line from 0,0 to 1,1
line dotted from .5,0 to .5,1
define blob X "\v’.2m’\(bu\v’-.2m’" X
blob at 0,.5; blob at .5,.5; blob at 1,.5
.ps
.vs

Theps andvs commands preceding the graph set the text size to 14 points and the vertical spacing to 18
points; the two quantities are reset by the commands following the.G2 . Such size changes should be made
outside theGRAP program, as mentioned earlier. The4 following the .G1 stretches the graph (including
GRAP’s estimate of the accompanying text) to be four inches wide; it is an alternative to altering the
frame command. The macroblob is a plotting symbol that is much larger thanbullet ; the different
name ensures that later references tobullet are unaffected. TheTROFF commands within theblob
string move the character down two-tenths of an em to center its plotting position (determined experimen-
tally) and then reset the vertical position. The program produces this trivial (but large) graph.

0 0.5 1

0

0.5

1

Response
Variable

Factor Variable

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

� � �

4. Using GRAP

Following are a few day-to-day matters about usingGRAP.

Errors:

GRAPattempts to pinpoint input errors; for example, the input

.G1
i = i + 1

results in this message onstderr :

- 33 -

grap: syntax error near line 1, file -
context is

i = i >>> + <<< 1

The error was noticed at the+. Unfortunately, pinpointing is not the same as explaining: the real error is
that the variablei was not initialized.

The ‘‘words’’ x andy are reserved (for thecoord statement); you will get an equally inexplicable
syntax error message if you use them as variable names.

GRAP tries to load a file of standard macro definitions (/usr/lib/grap.defines) for terms
like bullet , plus , etc., but doesn’t complain if that file isn’t found. If you later use one of these words,
however, you’ll get a syntax error message.

Certain constructs suggested by analogy toPIC do not work. For example,.GS and.GE would have
been nicer than.G1 and.G2 , but they were already taken. ThePIC construct

.PS <file

has been superseded byGRAP’s copy command (which in turn has been retrofitted intoPIC).

TROFF issues:

You may useTROFFcommands like.ps or .ft to change text sizes and fonts within a graph, or
balanced\s and\f commands within a string. Do not, however, add space (.sp) or change the line spac-
ing (.vs , .ls) within a graph. Some defined terms likebullet contain embedded size changes; further
qualifying them withGRAPsize commands may not always work.

BecauseGRAP is built on top ofPIC, the following quote from thePIC manual is relevant: ‘‘There is
a subtle problem with complicated equations insidePIC pictures� they come out wrong ifEQN has to
leave extra vertical space for the equation. If your equation involves more than subscripts and superscripts,
you must add to the beginning of each such equation the extra informationspace 0 ’’. This feature was
illustrated on page 20.

Alternatives:

BesidesGRAPand your local draftsperson, what other choices are there?

The S system provides a host of tools for statistical analysis, but somewhat fewer tools thanGRAP for
producing document-quality graphs. S produces graphs on the screen of a 5620 terminal much more
quickly thanGRAP (often in seconds rather than minutes), but it takes somewhat longer to learn (at least for
us). If you expect to do a lot of interactive data analysis, then S is probably the right tool for you. S may
be used to generatePIC commands.

The standard Unix programGRAPH provides many of the basic features ofGRAP, though with quite
a bit less control over details, particularly text. It produces output only in the Unix plot language, which
may be processed by a variety of filters for a variety of output devices.

The original Unix typesetter graphics programs arePIC and IDEAL ; you may be able to do as well
without usingGRAPas an intermediary. In particular,IDEAL provides shading and clipping, which are use-
ful in presentation-quality bar charts and the like, but are well beyond the capabilities ofPIC.

The Analyst’s Workbench family of programs includes a plotting package called D. TheDISSPLA
software purveyed by Bell Labs computer centers has extensive facilities for drawing graphs.

5. Reference Manual

In the following, italic terms are syntactic categories,typewriter terms are literals, parenthesized
constructs are optional, and ... indicates repetition. In most cases, the order of statements, constructs and
attributes is immaterial.

- 34 -

grap program:
.G1 (width in inches)
grap statement
...
.G2

A width on the.G1 line overrides the computed width, as inPIC.

grap statement:
frame| label | coord | ticks | grid | plot | line | circle | draw | new| next

| graph | numberlist| copy| for | if | sh | pic | assignment| print

Theframe statement defines the frame that surrounds the graph:

frame:
frame (ht expr) (wid expr) ((side) linedesc) ...

side:
top | bot | left | right

linedesc:
solid | invis | dotted (expr) | dashed (expr)

Height and width default to 2 and 3 inches; sides default to solid. Ifsideis omitted, thelinedescapplies to
the entire frame. The optional expressions afterdotted anddashed change the spacing exactly as in
PIC.

The label statement places a label on a specified side:

label:
label side strlist ... shift

shift:
left | right | up | down expr ...

strlist:
str ... (rjust | ljust | above | below) ... (size (±) expr) ...

str:
" ..."

Lists of text strings are stacked vertically. In any context, string lists may contain clauses to adjust the
position or change the point size. Each clause applies to the string preceding it and all following strings.

Normally the coordinate system is defined by the data, with 7 percent extra on each side. (To change
that to 5 percent, assign 0.05 to theGRAPvariablemargin , which is reset to 0.07 at each.G1 statement.)
Thecoord statement defines an overriding system:

coord:
coord (name) (x expr,expr) (y expr,expr) (log x | log y | log log)

Coordinate systems can be named; ranges, logarithmic scaling, etc., are done separately for each.

Theticks statement places tick marks on one side of the frame:

ticks:
ticks side (in | out (expr)) (shift) (tick-locations)

tick-locations:
at (name) expr (str), expr (str), ...

| from (name) expr to expr (by (op) expr) str

If no ticks are specified, they will be provided automatically;ticks off suppresses automatic ticks. The
optional expression afterin or out specifies the length of the ticks in inches. The optional name refers to
a coordinate system. Ifstr contains format specifiers like%f or %g, they are interpreted as byprintf . If
nostr is supplied, the tick labels will be the values of the expressions.

If the by clause is omitted, steps are of size 1. If theby expression is preceded by one of+, - , * or
/ , the step is scaled by that operator, e.g.,*10 means that each step is 10 times the previous one.

- 35 -

Thegrid statement produces grid lines along (i.e., perpendicular to) the named side.

grid:
grid side (linedesc) (shift) (tick-locations)

Grids are labeled by the same mechanism asticks .

Plot statements place text at a point:

plot:
strlist at point
plot expr (str) at point

point:
(name) expr,expr

As in the label statement, the string list may contain position and size modifiers. Theplot statement
uses the optional format string as in theC printf statement� it may contain a%f or %g. The optional
name refers to a coordinate system.

The line statement draws a line or arrow from here to there:

line:
(line | arrow) from point to point (linedesc)

Thecircle statement draws a circle:

circle:
circle at point (radius expr)

The radius is in inches; the default size is small.

Thedraw statement defines a sequence of lines:

draw:
draw (name) linedesc (str)

Subsequent data for the named sequence will be plotted as a line of the specified style, with the optionalstr
plotted at each point. Thenext statement continues a sequence:

next:
next (name) at point (linedesc)

If a line description is specified, it overrides the default display mode for the line segment ending atpoint.
Thenew statement starts a new sequence; it has the same format as thedraw statement.

A line consisting of a set of numbers is treated as a family of pointsx, y1, y2, etc., to be plotted at the
singlex value.

numberlist:
number ...

If there is only one number it is treated as ay value, andx values of 1, 2, 3, ... are supplied automatically.

GRAP provides arithmetic with the operators+, - , * and / . Variables may be assigned to; assign-
ments are expressions. Built-in functions includelog , exp (both base 10� beware!),int (truncates
towards zero),sin , cos (both use radians),atan2(dy,dx) , sqrt , min (two arguments only),max
(ditto), andrand() (returns a real number random on [0,1)).

Thefor statement provides a modest looping facility:

for:
for var from expr to expr (by (op) expr) do X anything X

X is any single character that doesn’t appear in the string. IfX is a left brace{ , then the string may contain
internally balanced braces and is terminated by a right brace} . The textanything(which may contain new-
lines) is repeated asvar takes on values fromexpr1 to expr2. As with tick iterators, theby clause is
optional, and may proceed arithmetically or multiplicatively. In afor statement, thefrom may be
replaced by ‘‘=’’.

- 36 -

The if-then-else statement provides conditional evaluation:

if :
if expr then X anything X else X anything X

The else -clause is optional. Relational operators include==, != , >, >=, <, <=, ! , || , and&&. Strings
may be compared with the operators== and!= .

GRAPprovides the same macro processor thatPIC does:

define macro_name X anything X

Subsequent occurrences of the macro name will be replaced by the string, with arguments of the form $n
replaced by corresponding actual arguments. Macro definitions persist across.G2 boundaries, as do values
of variables.

Thecopy statement is somewhat overloaded:

copy " filename"

includes the contents of the named file at that point;

copy " filename" thru macro_name

copies the file through the macro; and

copy thru macro_name

copies subsequent lines through the macro; each number or quoted string is treated as an argument. In each
case, copying continues until end of file or the next.G2 . The optional clauseuntil str causes copying to
terminate when a line whose first field isstr occurs. In all cases, the macro can be specified inline rather
than by name:

copy thru X macro body X

Thesh command passes text through to the Unix shell.

sh:
sh X anything X

The body of the command is scanned for macros. The built-in macropid is a string consisting of the pro-
cess identification number; it can be used to generate unique file names.

The pic command passes text through toPIC with the ‘‘pic ’’ removed; variables and macros are
not evaluated. Lines beginning with a period (that are not numbers) are passed through literally, under the
assumption that they areTROFFcommands.

Thegraph statement

graph:
graph Picname (pic-text)

defines a new graph namedPicname, resetting all coordinate systems. If anygraph commands are used
in a GRAPprogram, then the statement after the.G1 must be agraph command. Thepic-textcan be used
to position this graph relative to previous graphs by referring to theirFrames, as in

graph First
...

graph Second with .Frame.w at First.Frame.e + (0.1,0)

Macros and expressions inpic-textare not evaluated.Picnames must begin with a capital letter to satisfy
PIC syntax.

Theprint statement

print:
print (expr | str)

writes onstderr asGRAPprocesses its input; it is sometimes useful for debugging.

- 37 -

Many reserved words have synonyms, such asthru for through , tick for ticks, andbot for
bottom .

The # introduces a comment, which ends at the end of the line. Statements may be continued over
several lines by preceding each newline with a backslash character. Multiple statements may appear on a
single line separated by semicolons.GRAP ignores any line that is entirely blank, including those processed
by copy thru commands.

When GRAP is first executed it reads standard macro definitions from the file
/usr/lib/grap.defines . The definitions includebullet , plus , box , star , dot , times ,
htick , vtick , square , anddelta .

- 38 -

Summary of GRAP Commands

In the following, italic terms are syntactic categories,typewriter terms are literals, parenthesized
constructs are optional, and ... indicates repetition. In most cases, the order of statements, constructs and
attributes is immaterial.

grap program:
.G1 (width in inches)
grap statement
...

.G2
grap statement:

frame | label | coord | ticks | grid | plot | line | circle | draw | new | next
| graph | numberlist | copy | for | if | pic | assignment| print
| define | copy | sh

frame:frame (ht expr) (wid expr) ((side) linedesc) ...
side:top | bot | left | right
linedesc:solid | invis | dotted (expr) | dashed (expr)
label: label side strlist ... shi ft
shi ft: left | right | up | down expr ...
strlist:str ... (rjust | ljust | above | below) ... (size (±) expr) ...
str:" ..."
coord:coord (name) (x expr,expr) (y expr,expr) (log x | log y | log log)
ticks:ticks side (in | out (expr)) (shi ft) (tick-locations)
tick-locations:

at (name) expr (str) , expr (str) , ...
| from (name) expr to expr (by (+ | - | * | /) expr) str

grid:grid side (linedesc) (shi ft) (tick-locations)
plot:strlist at point | plot expr (str) at point
point:(name) expr,expr
line:(line | arrow) from point to point (linedesc)
circle:circle at point (radius expr)
draw:draw (name) linedesc(str)
new:new (name) linedesc(str)
next:next (name) at point (linedesc)
numberlist:number ...
for:for var from expr to expr (by (+ | - | * | /) expr) do X anything X
i f : if expr then X anything Xelse X anything X
graph:graph Picname(pic-text)
print:print (expr | str)
de fine:define macro_name X anything X
copy:copy ("filename") (thru macro_name | X macro body X) (until "endstring")
sh:sh X anything X
pic:pic anything
assignment:var = expr
X:any single character, or braces { }

Predefined strings includebullet , plus , box , star , dot , times , htick , vtick , square , and
delta . Built-in functions includelog (base 10),exp (base 10),int , sin , cos , atan2 , sqrt , min ,
max, andrand .

