const std = @import("std"); const testing = std.testing; const net = std.net; const os = std.os; const fmt = std.fmt; const log = std.log.scoped(.libipc_context); const receive_fd = @import("./exchange-fd.zig").receive_fd; const Timer = std.time.Timer; const CBEvent = @import("./callback.zig").CBEvent; const Connection = @import("./connection.zig").Connection; const Message = @import("./message.zig").Message; const Event = @import("./event.zig").Event; const Switch = @import("./switch.zig").Switch; const print_eq = @import("./util.zig").print_eq; const Messages = @import("./message.zig").Messages; const SwitchDB = @import("./switch.zig").SwitchDB; const Connections = @import("./connection.zig").Connections; const CBEventType = @import("./ipc.zig").CBEvent.Type; pub const PollFD = std.ArrayList(std.os.pollfd); pub const IPC_HEADER_SIZE = 4; // Size (4 bytes) then content. pub const IPC_BASE_SIZE = 100000; // 100 KB, plenty enough space for messages pub const IPC_MAX_MESSAGE_SIZE = IPC_BASE_SIZE-IPC_HEADER_SIZE; pub const IPC_VERSION = 1; // Context of the whole networking state. pub const Context = struct { rundir: [] u8, allocator: std.mem.Allocator, // Memory allocator. connections: Connections, // Keep track of connections. // "pollfd" structures passed to poll(2). Same indexes as "connections". pollfd: PollFD, // .fd (fd_t) + .events (i16) + .revents (i16) tx: Messages, // Messages to send, once their fd is available. switchdb: SwitchDB, // Relations between fd. timer: ?i32 = null, // No timer by default (no TIMER event). const Self = @This(); // Context initialization: // - init structures (provide the allocator) pub fn init(allocator: std.mem.Allocator) !Self { var rundir = std.process.getEnvVarOwned(allocator, "RUNDIR") catch |err| switch(err) { error.EnvironmentVariableNotFound => blk: { break :blk try allocator.dupeZ(u8, "/tmp/libipc-run/"); }, else => { return err; }, }; return Self { .rundir = rundir , .connections = Connections.init(allocator) , .pollfd = PollFD.init(allocator) , .tx = Messages.init(allocator) , .switchdb = SwitchDB.init(allocator) , .allocator = allocator }; } // create a server path for the UNIX socket based on the service name pub fn server_path(self: *Self, service_name: []const u8, writer: anytype) !void { try writer.print("{s}/{s}", .{self.rundir, service_name}); } pub fn deinit(self: *Self) void { self.close_all() catch |err| switch(err){ error.IndexOutOfBounds => { log.err("context.deinit(): IndexOutOfBounds", .{}); }, }; self.allocator.free(self.rundir); self.connections.deinit(); self.pollfd.deinit(); for (self.tx.items) |m| { m.deinit(); } self.tx.deinit(); self.switchdb.deinit(); } // Both simple connection and the switched one share this code. fn connect_ (self: *Self, ctype: Connection.Type, path: []const u8) !i32 { var stream = try net.connectUnixSocket(path); const newfd = stream.handle; errdefer std.os.closeSocket(newfd); var newcon = Connection.init(ctype, null); try self.add_ (newcon, newfd); return newfd; } fn connect_ipcd (self: *Self, service_name: []const u8 , connection_type: Connection.Type) !?i32 { const buffer_size = 10000; var buffer: [buffer_size]u8 = undefined; var fba = std.heap.FixedBufferAllocator.init(&buffer); var allocator = fba.allocator(); // Get IPC_NETWORK environment variable // IPC_NETWORK is shared with the network service to choose the protocol stack, // according to the target service. // // Example, connecting to 'audio' service through tor service: // IPC_NETWORK="audio tor://some.example.com/audio" // // Routing directives can be chained using " ;" separator: // IPC_NETWORK="audio https://example.com/audio ;pong tls://pong.example.com/pong" var network_envvar = std.process.getEnvVarOwned(allocator, "IPC_NETWORK") catch |err| switch(err) { // error{ OutOfMemory, EnvironmentVariableNotFound, InvalidUtf8 } (ErrorSet) error.EnvironmentVariableNotFound => { log.debug("no IPC_NETWORK envvar: IPCd won't be contacted", .{}); return null; }, // no need to contact IPCd else => { return err; }, }; var lookupbuffer: [buffer_size]u8 = undefined; var lookupfbs = std.io.fixedBufferStream(&lookupbuffer); var lookupwriter = lookupfbs.writer(); try lookupwriter.print("{s};{s}", .{service_name, network_envvar}); // Try to connect to the IPCd service var ipcdfd = try self.connect_service("ipc"); defer self.close_fd (ipcdfd) catch {}; // in any case, connection should be closed // Send LOOKUP message // content: target service name;${IPC_NETWORK} // example: pong;pong tls://example.com:8998/pong var m = try Message.init (ipcdfd, allocator, lookupfbs.getWritten()); try self.write (m); // Read LOOKUP response // case error: ignore and move on (TODO) // else: get fd sent by IPCd then close IPCd fd var reception_buffer: [2000]u8 = undefined; var reception_size: usize = 0; var newfd = try receive_fd (ipcdfd, &reception_buffer, &reception_size); if (reception_size == 0) { return error.IPCdFailedNoMessage; } var response: []u8 = reception_buffer[0..reception_size]; if (! std.mem.eql(u8, response, "ok")) { return error.IPCdFailedNotOk; } var newcon = Connection.init(connection_type, null); try self.add_ (newcon, newfd); return newfd; } /// TODO: Add a new connection, but takes care of memory problems: /// in case one of the arrays cannot sustain another entry, the other /// won't be added. fn add_ (self: *Self, new_connection: Connection, fd: os.socket_t) !void { try self.connections.append(new_connection); try self.pollfd.append(.{ .fd = fd , .events = std.os.linux.POLL.IN , .revents = 0 }); } fn fd_to_index (self: Self, fd: i32) !usize { var i: usize = 0; while(i < self.pollfd.items.len) { if (self.pollfd.items[i].fd == fd) { return i; } i += 1; } return error.IndexNotFound; } /// Connect to the service directly, without reaching IPCd first. /// Return the connection FD. pub fn connect_service (self: *Self, service_name: []const u8) !i32 { var buffer: [1000]u8 = undefined; var fbs = std.io.fixedBufferStream(&buffer); var writer = fbs.writer(); try self.server_path(service_name, writer); var path = fbs.getWritten(); return self.connect_ (Connection.Type.IPC, path); } /// Tries to connect to IPCd first, then the service (if needed). /// Return the connection FD. pub fn connect_ipc (self: *Self, service_name: []const u8) !i32 { // First, try ipcd. if (try self.connect_ipcd (service_name, Connection.Type.IPC)) |fd| { log.debug("Connected via IPCd, fd is {}", .{fd}); return fd; } // In case this doesn't work, connect directly. return try self.connect_service (service_name); } /// Add a new file descriptor to follow, labeled as EXTERNAL. /// Useful for protocol daemons (ex: TCPd) listening to a socket for external connections, /// clients trying to reach a libipc service. pub fn add_external (self: *Self, newfd: i32) !void { var newcon = Connection.init(Connection.Type.EXTERNAL, null); try self.add_ (newcon, newfd); } fn accept_new_client(self: *Self, event: *Event, server_index: usize) !void { // net.StreamServer var serverfd = self.pollfd.items[server_index].fd; var path = self.connections.items[server_index].path orelse return error.ServerWithNoPath; var server = net.StreamServer { .sockfd = serverfd , .kernel_backlog = 100 , .reuse_address = false , .listen_address = try net.Address.initUnix(path) }; var client = try server.accept(); // net.StreamServer.Connection const newfd = client.stream.handle; var newcon = Connection.init(Connection.Type.IPC, null); try self.add_ (newcon, newfd); const sfd = server.sockfd orelse return error.SocketLOL; // TODO // WARNING: imply every new item is last event.set(Event.Type.CONNECTION, self.pollfd.items.len - 1, sfd, null); } // Create a unix socket. // Store std lib structures in the context. pub fn server_init(self: *Self, service_name: [] const u8) !net.StreamServer { var buffer: [1000]u8 = undefined; var fbs = std.io.fixedBufferStream(&buffer); var writer = fbs.writer(); try self.server_path(service_name, writer); var path = fbs.getWritten(); var server = net.StreamServer.init(.{}); var socket_addr = try net.Address.initUnix(path); try server.listen(socket_addr); const newfd = server.sockfd orelse return error.SocketLOL; // TODO // Store the path in the Connection structure, so the UNIX socket file can be removed later. var newcon = Connection.init(Connection.Type.SERVER, try self.allocator.dupeZ(u8, path)); try self.add_ (newcon, newfd); return server; } pub fn write (_: *Self, m: Message) !void { // Message contains the fd, no need to search for // the right structure to copy, let's just recreate // a Stream from the fd. var stream = net.Stream { .handle = m.fd }; var buffer = [_]u8{0} ** IPC_MAX_MESSAGE_SIZE; var fbs = std.io.fixedBufferStream(&buffer); var writer = fbs.writer(); _ = try m.write(writer); // returns paylen _ = try stream.write (fbs.getWritten()); } pub fn schedule (self: *Self, m: Message) !void { try self.tx.append(m); } /// Read from a client (indexed by a FD). pub fn read_fd (self: *Self, fd: i32) !?Message { return try self.read(try self.fd_to_index (fd)); } pub fn add_switch(self: *Self, fd1: i32, fd2: i32) !void { var index_origin = try self.fd_to_index(fd1); var index_destinataire = try self.fd_to_index(fd2); self.connections.items[index_origin].t = Connection.Type.SWITCHED; self.connections.items[index_destinataire].t = Connection.Type.SWITCHED; try self.switchdb.add_switch(fd1,fd2); } pub fn set_switch_callbacks(self: *Self, fd: i32 , in : *const fn (origin: i32, mcontent: [*]u8, mlen: *u32) CBEventType , out : *const fn (origin: i32, mcontent: [*]const u8, mlen: u32) CBEventType) !void { try self.switchdb.set_callbacks(fd,in, out); } pub fn read (self: *Self, index: usize) !?Message { if (index >= self.pollfd.items.len) { return error.IndexOutOfBounds; } var buffer = [_]u8{0} ** IPC_MAX_MESSAGE_SIZE; var packet_size: usize = undefined; // TODO: this is a problem from the network API in Zig, // servers and clients are different, they aren't just fds. // Maybe there is something to change in the API. if (self.connections.items[index].t == .SERVER) { return error.messageOnServer; } // This may be kinda hacky, idk. var fd = self.pollfd.items[index].fd; var stream: net.Stream = .{ .handle = fd }; packet_size = try stream.read(buffer[0..]); // Let's handle this as a disconnection. if (packet_size <= 4) { return null; } return try Message.read(fd, buffer[0..], self.allocator); } /// Before closing the fd, test it via the 'fcntl' syscall. /// This is useful for switched connections: FDs could be closed without libipc being informed. fn safe_close_fd (self: *Self, fd: i32) void { var should_close = true; _ = std.os.fcntl(fd, std.os.F.GETFD, 0) catch { should_close = false; }; if (should_close) { self.close_fd(fd) catch {}; } } // Wait for an event. pub fn wait_event(self: *Self) !Event { var current_event: Event = Event.init(Event.Type.ERROR, 0, 0, null); var wait_duration: i32 = -1; // -1 == unlimited if (self.timer) |t| { log.debug("listening (timer: {} ms)", .{t}); wait_duration = t; } else { log.debug("listening (no timer)", .{}); } // Make sure we listen to the right file descriptors, // setting POLLIN & POLLOUT flags. for (self.pollfd.items) |*fd| { fd.events |= std.os.linux.POLL.IN; // just to make sure } for (self.tx.items) |m| { for (self.pollfd.items) |*fd| { if (fd.fd == m.fd) { fd.events |= std.os.linux.POLL.OUT; // just to make sure } } } // before initiate a timer var timer = try Timer.start(); // Polling. var count: usize = undefined; count = try os.poll(self.pollfd.items, wait_duration); if (count < 0) { log.err("there is a problem: poll < 0", .{}); current_event = Event.init(Event.Type.ERROR, 0, 0, null); return current_event; } var duration = timer.read() / 1000000; // ns -> ms if (count == 0) { if (duration >= wait_duration) { current_event = Event.init(Event.Type.TIMER, 0, 0, null); } else { // In case nothing happened, and poll wasn't triggered by time out. current_event = Event.init(Event.Type.ERROR, 0, 0, null); } return current_event; } // handle messages // => loop over self.pollfd.items for (self.pollfd.items) |*fd, i| { // .revents is POLLIN if(fd.revents & std.os.linux.POLL.IN > 0) { // SERVER = new connection if (self.connections.items[i].t == .SERVER) { try self.accept_new_client(¤t_event, i); return current_event; } // SWITCHED = send message to the right dest (or drop the switch) else if (self.connections.items[i].t == .SWITCHED) { current_event = self.switchdb.handle_event_read (i, fd.fd); switch (current_event.t) { .SWITCH_RX => { try self.schedule(current_event.m.?); }, .DISCONNECTION => { var dest = try self.switchdb.getDest(fd.fd); log.debug("disconnection from {} -> removing {}, too", .{fd.fd, dest}); self.switchdb.nuke(fd.fd); self.safe_close_fd(fd.fd); self.safe_close_fd(dest); }, .ERROR => { var dest = try self.switchdb.getDest(fd.fd); log.warn("error from {} -> removing {}, too", .{fd.fd, dest}); self.switchdb.nuke(fd.fd); self.safe_close_fd(fd.fd); self.safe_close_fd(dest); }, else => { log.warn("switch rx incoherent error: {}", .{current_event.t}); return error.incoherentSwitchError; }, } return current_event; } // EXTERNAL = user handles IO else if (self.connections.items[i].t == .EXTERNAL) { return Event.init(Event.Type.EXTERNAL, i, fd.fd, null); } // otherwise = new message or disconnection else { var maybe_message = self.read(i) catch |err| switch(err) { error.ConnectionResetByPeer => { log.warn("connection reset by peer", .{}); try self.close(i); return Event.init(Event.Type.DISCONNECTION, i, fd.fd, null); }, else => { return err; }, }; if (maybe_message) |m| { return Event.init(Event.Type.MESSAGE_RX, i, fd.fd, m); } try self.close(i); return Event.init(Event.Type.DISCONNECTION, i, fd.fd, null); } } // .revent is POLLOUT if(fd.revents & std.os.linux.POLL.OUT > 0) { fd.events &= ~ @as(i16, std.os.linux.POLL.OUT); var index: usize = undefined; for (self.tx.items) |m, index_| { if (m.fd == self.pollfd.items[i].fd) { index = index_; break; } } var m = self.tx.swapRemove(index); // SWITCHED = write message for its switch buddy (callbacks) if (self.connections.items[i].t == .SWITCHED) { current_event = self.switchdb.handle_event_write (i, m); // Message inner memory is already freed. switch (current_event.t) { .SWITCH_TX => { }, .ERROR => { var dest = try self.switchdb.getDest(fd.fd); log.warn("error from {} -> removing {}, too", .{fd.fd, dest}); self.switchdb.nuke(fd.fd); self.safe_close_fd(fd.fd); self.safe_close_fd(dest); }, else => { log.warn("switch tx incoherent error: {}", .{current_event.t}); return error.incoherentSwitchError; }, } return current_event; } else { // otherwise = write message for the msg.fd try self.write (m); m.deinit(); return Event.init(Event.Type.MESSAGE_TX, i, fd.fd, null); } } // .revent is POLLHUP if(fd.revents & std.os.linux.POLL.HUP > 0) { // handle disconnection current_event = Event.init(Event.Type.DISCONNECTION, i, fd.fd, null); try self.close(i); return current_event; } // if fd revent is POLLERR or POLLNVAL if ((fd.revents & std.os.linux.POLL.HUP > 0) or (fd.revents & std.os.linux.POLL.NVAL > 0)) { return Event.init(Event.Type.ERROR, i, fd.fd, null); } } return current_event; } /// Remove a connection based on its file descriptor. pub fn close_fd(self: *Self, fd: i32) !void { try self.close(try self.fd_to_index (fd)); } pub fn close(self: *Self, index: usize) !void { // REMINDER: connections and pollfd have the same length if (index >= self.pollfd.items.len) { return error.IndexOutOfBounds; } // close the connection and remove it from the two structures var con = self.connections.swapRemove(index); // Remove service's UNIX socket file. if (con.path) |path| { std.fs.cwd().deleteFile(path) catch {}; self.allocator.free(path); } var pollfd = self.pollfd.swapRemove(index); std.os.close(pollfd.fd); // Remove all its non-sent messages. var i: usize = 0; while (true) { if (i >= self.tx.items.len) break; if (self.tx.items[i].fd == pollfd.fd) { var m = self.tx.swapRemove(i); m.deinit(); continue; } i += 1; } } pub fn close_all(self: *Self) !void { while(self.connections.items.len > 0) { try self.close(0); } } pub fn format(self: Self, comptime form: []const u8, options: fmt.FormatOptions, out_stream: anytype) !void { try fmt.format(out_stream , "context ({} connections and {} messages):" , .{self.connections.items.len, self.tx.items.len}); for (self.connections.items) |con| { try fmt.format(out_stream, "\n- ", .{}); try con.format(form, options, out_stream); } for (self.tx.items) |tx| { try fmt.format(out_stream, "\n- ", .{}); try tx.format(form, options, out_stream); } } }; // Creating a new thread: testing UNIX communication. // This is a client sending a raw "Hello world!" bytestring, // not an instance of Message. const CommunicationTestThread = struct { fn clientFn() !void { const config = .{.safety = true}; var gpa = std.heap.GeneralPurposeAllocator(config){}; defer _ = gpa.deinit(); const allocator = gpa.allocator(); var c = try Context.init(allocator); defer c.deinit(); // There. Can't leak. Isn't Zig wonderful? var buffer: [1000]u8 = undefined; var fbs = std.io.fixedBufferStream(&buffer); var writer = fbs.writer(); try c.server_path("simple-context-test", writer); var path = fbs.getWritten(); const socket = try net.connectUnixSocket(path); defer socket.close(); _ = try socket.writer().writeAll("Hello world!"); } }; test "Context - creation, display and memory check" { const config = .{.safety = true}; var gpa = std.heap.GeneralPurposeAllocator(config){}; defer _ = gpa.deinit(); const allocator = gpa.allocator(); var c = try Context.init(allocator); defer c.deinit(); // There. Can't leak. Isn't Zig wonderful? var buffer: [1000]u8 = undefined; var fbs = std.io.fixedBufferStream(&buffer); var writer = fbs.writer(); try c.server_path("simple-context-test", writer); var path = fbs.getWritten(); // SERVER SIDE: creating a service. var server = c.server_init("simple-context-test") catch |err| switch(err) { error.FileNotFound => { log.err("cannot init server at {s}", .{path}); return err; }, else => return err, }; defer std.fs.cwd().deleteFile(path) catch {}; // Once done, remove file. const t = try std.Thread.spawn(.{}, CommunicationTestThread.clientFn, .{}); defer t.join(); // Server.accept returns a net.StreamServer.Connection. var client = try server.accept(); defer client.stream.close(); var buf: [16]u8 = undefined; const n = try client.stream.reader().read(&buf); try testing.expectEqual(@as(usize, 12), n); try testing.expectEqualSlices(u8, "Hello world!", buf[0..n]); } // Creating a new thread: testing UNIX communication. // This is a client sending a an instance of Message. const ConnectThenSendMessageThread = struct { fn clientFn() !void { const config = .{.safety = true}; var gpa = std.heap.GeneralPurposeAllocator(config){}; defer _ = gpa.deinit(); const allocator = gpa.allocator(); var c = try Context.init(allocator); defer c.deinit(); // There. Can't leak. Isn't Zig wonderful? var path_buffer: [1000]u8 = undefined; var path_fbs = std.io.fixedBufferStream(&path_buffer); var path_writer = path_fbs.writer(); try c.server_path("simple-context-test", path_writer); var path = path_fbs.getWritten(); // Actual UNIX socket connection. const socket = try net.connectUnixSocket(path); defer socket.close(); // Writing message into a buffer. var message_buffer: [1000]u8 = undefined; var message_fbs = std.io.fixedBufferStream(&message_buffer); var message_writer = message_fbs.writer(); // 'fd' parameter is not taken into account here (no loop) var m = try Message.init(0, allocator, "Hello world!"); defer m.deinit(); _ = try m.write(message_writer); _ = try socket.writer().writeAll(message_fbs.getWritten()); } }; test "Context - creation, echo once" { const config = .{.safety = true}; var gpa = std.heap.GeneralPurposeAllocator(config){}; defer _ = gpa.deinit(); const allocator = gpa.allocator(); var c = try Context.init(allocator); defer c.deinit(); // There. Can't leak. Isn't Zig wonderful? var buffer: [1000]u8 = undefined; var fbs = std.io.fixedBufferStream(&buffer); var writer = fbs.writer(); try c.server_path("simple-context-test", writer); var path = fbs.getWritten(); // SERVER SIDE: creating a service. var server = c.server_init("simple-context-test") catch |err| switch(err) { error.FileNotFound => { log.err("cannot init server at {s}", .{path}); return err; }, else => return err, }; defer std.fs.cwd().deleteFile(path) catch {}; // Once done, remove file. const t = try std.Thread.spawn(.{}, ConnectThenSendMessageThread.clientFn, .{}); defer t.join(); // Server.accept returns a net.StreamServer.Connection. var client = try server.accept(); defer client.stream.close(); var buf: [1000]u8 = undefined; const n = try client.stream.reader().read(&buf); var m = try Message.read(8, buf[0..n], allocator); // 8 == random client's fd number defer m.deinit(); try testing.expectEqual(@as(usize, 12), m.payload.len); try testing.expectEqualSlices(u8, m.payload, "Hello world!"); }