Provide support for half-precision floats

dev
Alberto Restifo 2020-05-03 13:39:06 +02:00
parent d0ee8df1af
commit 332ca4af10
3 changed files with 30 additions and 29 deletions

View File

@ -5,22 +5,16 @@
This library implements the [RFC7049: Concise Binary Object Representation (CBOR)][rfc]
in Crystal.
**WARNING:** This library is still a work in progress.
## Features
- Full support for diagnostic notation
- Assign a field to a type base on the CBOR tag
- Support for a wide range of IANA CBOR Tags
- Support for a wide range of IANA CBOR Tags (see below)
## Limitations
### Half-precision floating point is not supported
Crystal doesn't have a `Float16` type, so half-precision floating point numbers
are not supported for the time being.
If you know of a way to solve handle half-precision float, a contribution would
be really appreciated.
### Maximum Array/String array/Bytes array length
The spec allows for the maximum length of arrays, string arrays and bytes array
@ -49,6 +43,15 @@ require "cbor"
TODO: Write usage instructions here
## Supported tags
All the tags specified in [section 2.4 of RFC 7049][rfc-tags] are supported
and the values are encoded in the respective Crystal types:
- `Time`
- `BigInt`
- `BigFloat`
## Development
TODO: Write development instructions here
@ -66,3 +69,4 @@ TODO: Write development instructions here
- [Alberto Restifo](https://github.com/your-github-user) - creator and maintainer
[rfc]: https://tools.ietf.org/html/rfc7049
[rfc-tags]: https://tools.ietf.org/html/rfc7049#section-2.4

View File

@ -3,19 +3,17 @@ require "./spec_helper"
# All those tests have been exported from the RFC7049 appendix A.
tests = [
# Disabled as half-precision floats are not supported:
{ %(0.0), "f9 00 00" },
{ %(-0.0), "f9 80 00" },
{ %(1.0), "f9 3c 00" },
{ %(1.5), "f9 3e 00" },
{ %(65504.0), "f9 7b ff" },
# { %(0.00006103515625), "f9 04 00" }, TODO: Something about the presentation
{ %(6.1035156e-5), "f9 04 00" },
{ %(-4.0), "f9 c4 00" },
# { %(5.960464477539063e-8), "f9 00 01" },
# { %(Infinity), "f9 7c 00" },
# { %(NaN), "f9 7e 00" },
# { %(-Infinity), "f9 fc 00" },
{ %(5.9604645e-8), "f9 00 01" },
{ %(Infinity), "f9 7c 00" },
{ %(NaN), "f9 7e 00" },
{ %(-Infinity), "f9 fc 00" },
{ %(0), "00" },
{ %(1), "01" },
{ %(10), "0a" },
@ -36,7 +34,7 @@ tests = [
{ %(-1000), "39 03 e7" },
{ %(1.1), "fb 3f f1 99 99 99 99 99 9a" },
{ %(100000.0), "fa 47 c3 50 00" },
# { %(3.4028234663852886e+38), "fa 7f 7f ff ff" }, TODO: Not precise enough?
{ %(3.4028235e+38), "fa 7f 7f ff ff" },
{ %(1.0e+300), "fb 7e 37 e4 3c 88 00 75 9c" },
{ %(-4.1), "fb c0 10 66 66 66 66 66 66" },
{ %(Infinity), "fa 7f 80 00 00" },

View File

@ -1,30 +1,29 @@
# Returns a Float32 by reading the 16 bit as a IEEE 754 half-precision floating
# point (Float16).
# Reads the `UInt16` as a half-point floating point number
def Float32.new(i : UInt16)
# Check for signed zero
if i & 0x7FFF_u16 == 0
if i & 0x7FFF == 0
return (i.unsafe_as(UInt32) << 16).unsafe_as(Float32)
end
half_sign = (i & 0x8000_u16).unsafe_as(UInt32)
half_exp = (i & 0x7C00_u16).unsafe_as(UInt32)
half_man = (i & 0x03FF_u16).unsafe_as(UInt32)
half_sign = (i & 0x8000).to_u32
half_exp = (i & 0x7C00).to_u32
half_man = (i & 0x03FF).to_u32
# Check for an infinity or NaN when all exponent bits set
if half_exp == 0x7C00_u32
if (i & 0x7C00) == 0x7C00
# Check for signed infinity if mantissa is zero
if half_man == 0
return ((half_sign << 16) | 0x7F80_0000_u32).unsafe_as(Float32)
return ((half_sign << 16) | 0x7F80_0000).unsafe_as(Float32)
else
# NaN, keep current mantissa but also set most significiant mantissa bit
return ((half_sign << 16) | 0x7FC0_0000_u32 | (half_man << 13)).unsafe_as(Float32)
return ((half_sign << 16) | 0x7FC0_0000 | (half_man << 13)).unsafe_as(Float32)
end
end
# Calculate single-precision components with adjusted exponent
sign = half_sign << 16
# Unbias exponent
unbiased_exp = ((half_exp.unsafe_as(Int32)) >> 10) - 15
unbiased_exp = (half_exp.unsafe_as(Int32) >> 10) - 15
# Check for subnormals, which will be normalized by adjusting exponent
if half_exp == 0
@ -33,12 +32,12 @@ def Float32.new(i : UInt16)
# Rebias and adjust exponent
exp = (127 - 15 - e) << 23
man = (half_man << (14 + e)) & 0x7F_FF_FF_u32
man = (half_man << (14 + e)) & 0x7F_FF_FF
return (sign | exp | man).unsafe_as(Float32)
end
# Rebias exponent for a normalized normal
exp = (unbiased_exp + 127).unsafe_as(UInt32) << 23
man = (half_man & 0x03FF_u32) << 13
man = (half_man & 0x03FF) << 13
(sign | exp | man).unsafe_as(Float32)
end